Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ElasticHNScattering.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28// ------------------------------------------------------------
29// GEANT 4 class implemetation file
30//
31// ---------------- G4ElasticHNScattering --------------
32// by V. Uzhinsky, March 2008.
33// elastic scattering used by Fritiof model
34// Take a projectile and a target
35// scatter the projectile and target
36// ---------------------------------------------------------------------
37
38
39#include "globals.hh"
40#include "Randomize.hh"
42
44#include "G4LorentzRotation.hh"
45#include "G4ThreeVector.hh"
47#include "G4VSplitableHadron.hh"
48#include "G4ExcitedString.hh"
49#include "G4FTFParameters.hh"
50//#include "G4ios.hh"
51
53{
54}
55
58 G4VSplitableHadron *target,
59 G4FTFParameters *theParameters) const
60{
61// -------------------- Projectile parameters -----------------------------------
62 G4LorentzVector Pprojectile=projectile->Get4Momentum();
63
64 if(Pprojectile.z() < 0.)
65 {
66 target->SetStatus(2);
67 return false;
68 }
69
70 G4bool PutOnMassShell(false);
71
72 G4double M0projectile = Pprojectile.mag();
73 if(M0projectile < projectile->GetDefinition()->GetPDGMass())
74 {
75 PutOnMassShell=true;
76 M0projectile=projectile->GetDefinition()->GetPDGMass();
77 }
78
79 G4double Mprojectile2 = M0projectile * M0projectile;
80
81 G4double AveragePt2=theParameters->GetAvaragePt2ofElasticScattering();
82
83// -------------------- Target parameters ----------------------------------------------
84
85 G4LorentzVector Ptarget=target->Get4Momentum();
86
87 G4double M0target = Ptarget.mag();
88
89 if(M0target < target->GetDefinition()->GetPDGMass())
90 {
91 PutOnMassShell=true;
92 M0target=target->GetDefinition()->GetPDGMass();
93 }
94
95 G4double Mtarget2 = M0target * M0target;
96
97// Transform momenta to cms and then rotate parallel to z axis;
98
99 G4LorentzVector Psum;
100 Psum=Pprojectile+Ptarget;
101
102 G4LorentzRotation toCms(-1*Psum.boostVector());
103
104 G4LorentzVector Ptmp=toCms*Pprojectile;
105
106 if ( Ptmp.pz() <= 0. )
107 {
108 // "String" moving backwards in CMS, abort collision !!
109 //G4cout << " abort Collision!! " << G4endl;
110 target->SetStatus(2);
111 return false;
112 }
113
114 toCms.rotateZ(-1*Ptmp.phi());
115 toCms.rotateY(-1*Ptmp.theta());
116
117 G4LorentzRotation toLab(toCms.inverse());
118
119 Pprojectile.transform(toCms);
120 Ptarget.transform(toCms);
121
122// ---------------------- Putting on mass-on-shell, if needed ------------------------
123 G4double PZcms2, PZcms;
124
125 G4double S=Psum.mag2();
126// G4double SqrtS=std::sqrt(S);
127
128 PZcms2=(S*S+Mprojectile2*Mprojectile2+Mtarget2*Mtarget2-
129 2*S*Mprojectile2-2*S*Mtarget2-2*Mprojectile2*Mtarget2)/4./S;
130
131 if(PZcms2 < 0.)
132 { // It can be in an interaction with off-shell nuclear nucleon
133 if(M0projectile > projectile->GetDefinition()->GetPDGMass())
134 { // An attempt to de-excite the projectile
135 // It is assumed that the target is in the ground state
136 M0projectile = projectile->GetDefinition()->GetPDGMass();
137 Mprojectile2=M0projectile*M0projectile;
138 PZcms2=(S*S+Mprojectile2*Mprojectile2+Mtarget2*Mtarget2-
139 2*S*Mprojectile2 - 2*S*Mtarget2 - 2*Mprojectile2*Mtarget2)
140 /4./S;
141
142 if(PZcms2 < 0.){ return false;} // Non succesful attempt after the de-excitation
143 }
144 else // if(M0projectile > projectile->GetDefinition()->GetPDGMass())
145 {
146 target->SetStatus(2);
147 return false; // The projectile was not excited,
148 // but the energy was too low to put
149 // the target nucleon on mass-shell
150 } // end of if(M0projectile > projectile->GetDefinition()->GetPDGMass())
151 } // end of if(PZcms2 < 0.)
152
153 PZcms = std::sqrt(PZcms2);
154
155 if(PutOnMassShell)
156 {
157 if(Pprojectile.z() > 0.)
158 {
159 Pprojectile.setPz( PZcms);
160 Ptarget.setPz( -PZcms);
161 }
162 else // if(Pprojectile.z() > 0.)
163 {
164 Pprojectile.setPz(-PZcms);
165 Ptarget.setPz( PZcms);
166 };
167
168 Pprojectile.setE(std::sqrt(Mprojectile2+
169 Pprojectile.x()*Pprojectile.x()+
170 Pprojectile.y()*Pprojectile.y()+
171 PZcms2));
172 Ptarget.setE(std::sqrt( Mtarget2 +
173 Ptarget.x()*Ptarget.x()+
174 Ptarget.y()*Ptarget.y()+
175 PZcms2));
176 } // end of if(PutOnMassShell)
177
178 G4double maxPtSquare = PZcms2;
179
180// ------ Now we can calculate the transfered Pt --------------------------
181 G4double Pt2;
182 G4double ProjMassT2; //, ProjMassT;
183 G4double TargMassT2; //, TargMassT;
184
185 G4LorentzVector Qmomentum;
186 Qmomentum=G4LorentzVector(GaussianPt(AveragePt2,maxPtSquare),0);
187
188 Pt2=G4ThreeVector(Qmomentum.vect()).mag2();
189
190 ProjMassT2=Mprojectile2+Pt2;
191// ProjMassT =std::sqrt(ProjMassT2);
192
193 TargMassT2=Mtarget2+Pt2;
194// TargMassT =std::sqrt(TargMassT2);
195
196 PZcms2=(S*S+ProjMassT2*ProjMassT2+
197 TargMassT2*TargMassT2-
198 2.*S*ProjMassT2-2.*S*TargMassT2-
199 2.*ProjMassT2*TargMassT2)/4./S;
200 if(PZcms2 < 0 ) {PZcms2=0;};// to avoid the exactness problem
201 PZcms =std::sqrt(PZcms2);
202
203 Pprojectile.setPz( PZcms);
204 Ptarget.setPz( -PZcms);
205
206 Pprojectile += Qmomentum;
207 Ptarget -= Qmomentum;
208
209// Transform back and update SplitableHadron Participant.
210 Pprojectile.transform(toLab);
211 Ptarget.transform(toLab);
212/* // Maybe it will be needed for an exact calculations--------------------
213 G4double TargetMomentum=std::sqrt(Ptarget.x()*Ptarget.x()+
214 Ptarget.y()*Ptarget.y()+
215 Ptarget.z()*Ptarget.z());
216*/
217
218// Calculation of the creation time ---------------------
219 projectile->SetTimeOfCreation(target->GetTimeOfCreation());
220 projectile->SetPosition(target->GetPosition());
221// Creation time and position of target nucleon were determined at
222// ReggeonCascade() of G4FTFModel
223// ------------------------------------------------------
224
225 projectile->Set4Momentum(Pprojectile);
226 target->Set4Momentum(Ptarget);
227
228 projectile->IncrementCollisionCount(1);
229 target->IncrementCollisionCount(1);
230
231 return true;
232}
233
234
235// --------- private methods ----------------------
236
237G4ThreeVector G4ElasticHNScattering::GaussianPt(G4double AveragePt2, G4double maxPtSquare) const
238{ // @@ this method is used in FTFModel as well. Should go somewhere common!
239
240 G4double Pt2(0.);
241 if(AveragePt2 <= 0.) {Pt2=0.;}
242 else
243 {
244 Pt2 = -AveragePt2 * std::log(1. + G4UniformRand() *
245 (std::exp(-maxPtSquare/AveragePt2)-1.));
246 }
247 G4double Pt=std::sqrt(Pt2);
248 G4double phi=G4UniformRand() * twopi;
249
250 return G4ThreeVector (Pt*std::cos(phi), Pt*std::sin(phi), 0.);
251}
252
254{
255 throw G4HadronicException(__FILE__, __LINE__, "G4ElasticHNScattering copy contructor not meant to be called");
256}
257
258
260{
261}
262
263
264const G4ElasticHNScattering & G4ElasticHNScattering::operator=(const G4ElasticHNScattering &)
265{
266 throw G4HadronicException(__FILE__, __LINE__, "G4ElasticHNScattering = operator not meant to be called");
267 //return *this; //A.R. 25-Jul-2012 : fix Coverity
268}
269
270
271int G4ElasticHNScattering::operator==(const G4ElasticHNScattering &) const
272{
273 throw G4HadronicException(__FILE__, __LINE__, "G4ElasticHNScattering == operator not meant to be called");
274 //return false; //A.R. 25-Jul-2012 : fix Coverity
275}
276
277int G4ElasticHNScattering::operator!=(const G4ElasticHNScattering &) const
278{
279 throw G4HadronicException(__FILE__, __LINE__, "G4ElasticHNScattering != operator not meant to be called");
280 //return true; //A.R. 25-Jul-2012 : fix Coverity
281}
CLHEP::HepLorentzVector G4LorentzVector
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
double mag2() const
HepLorentzRotation & rotateY(double delta)
HepLorentzRotation & rotateZ(double delta)
HepLorentzRotation inverse() const
double theta() const
Hep3Vector boostVector() const
Hep3Vector vect() const
HepLorentzVector & transform(const HepRotation &)
virtual G4bool ElasticScattering(G4VSplitableHadron *aPartner, G4VSplitableHadron *bPartner, G4FTFParameters *theParameters) const
G4double GetAvaragePt2ofElasticScattering()
void SetTimeOfCreation(G4double aTime)
void SetStatus(const G4int aStatus)
G4ParticleDefinition * GetDefinition() const
void Set4Momentum(const G4LorentzVector &a4Momentum)
const G4LorentzVector & Get4Momentum() const
const G4ThreeVector & GetPosition() const
void IncrementCollisionCount(G4int aCount)
void SetPosition(const G4ThreeVector &aPosition)