Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
LorentzRotation.h
Go to the documentation of this file.
1// -*- C++ -*-
2// CLASSDOC OFF
3// $Id:$
4// ---------------------------------------------------------------------------
5// CLASSDOC ON
6//
7// This file is a part of the CLHEP - a Class Library for High Energy Physics.
8//
9// This is the definition of the HepLorentzRotation class for performing
10// Lorentz transformations (rotations and boosts) on objects of the
11// HepLorentzVector class.
12//
13// HepLorentzRotation is a concrete implementation of Hep4RotationInterface.
14//
15// .SS See Also
16// RotationInterfaces.h
17// ThreeVector.h, LorentzVector.h
18// Rotation.h, Boost.h
19//
20// .SS Author
21// Leif Lonnblad, Mark Fischler
22
23#ifndef HEP_LORENTZROTATION_H
24#define HEP_LORENTZROTATION_H
25
26#ifdef GNUPRAGMA
27#pragma interface
28#endif
29
32#include "CLHEP/Vector/Boost.h"
34
35namespace CLHEP {
36
37// Global methods
38
41 const HepLorentzRotation & lt);
43 const HepLorentzRotation & lt);
45 const HepLorentzRotation & lt);
47 const HepLorentzRotation & lt);
48
49/**
50 * @author
51 * @ingroup vector
52 */
54
55public:
56 // ---------- Identity HepLorentzRotation:
57
59
60 // ---------- Constructors and Assignment:
61
63 // Default constructor. Gives a unit matrix.
64
66 // Copy constructor.
67
68 inline HepLorentzRotation (const HepRotation & r);
69 inline explicit HepLorentzRotation (const HepRotationX & r);
70 inline explicit HepLorentzRotation (const HepRotationY & r);
71 inline explicit HepLorentzRotation (const HepRotationZ & r);
72 inline HepLorentzRotation (const HepBoost & b);
73 inline explicit HepLorentzRotation (const HepBoostX & b);
74 inline explicit HepLorentzRotation (const HepBoostY & b);
75 inline explicit HepLorentzRotation (const HepBoostZ & b);
76 // Constructors from special cases.
77
81 // Assignment.
82
83 HepLorentzRotation & set (double bx, double by, double bz);
84 inline HepLorentzRotation & set (const Hep3Vector & p);
85 inline HepLorentzRotation & set (const HepRotation & r);
86 inline HepLorentzRotation & set (const HepRotationX & r);
87 inline HepLorentzRotation & set (const HepRotationY & r);
88 inline HepLorentzRotation & set (const HepRotationZ & r);
93 inline HepLorentzRotation (double bx, double by, double bz);
94 inline HepLorentzRotation (const Hep3Vector & p);
95 // Other Constructors giving a Lorentz-boost.
96
97 HepLorentzRotation & set( const HepBoost & B, const HepRotation & R );
98 inline HepLorentzRotation ( const HepBoost & B, const HepRotation & R );
99 // supply B and R: T = B R:
100
101 HepLorentzRotation & set( const HepRotation & R, const HepBoost & B );
102 inline HepLorentzRotation ( const HepRotation & R, const HepBoost & B );
103 // supply R and B: T = R B:
104
106 const HepLorentzVector & col2,
107 const HepLorentzVector & col3,
108 const HepLorentzVector & col4 );
109 // Construct from four *orthosymplectic* LorentzVectors for the columns:
110 // NOTE:
111 // This constructor, and the two set methods below,
112 // will check that the columns (or rows) form an orthosymplectic
113 // matrix, and will adjust values so that this relation is
114 // as exact as possible.
115 // Orthosymplectic means the dot product USING THE METRIC
116 // of two different coumns will be 0, and of a column with
117 // itself will be one.
118
120 const HepLorentzVector & col2,
121 const HepLorentzVector & col3,
122 const HepLorentzVector & col4 );
123 // supply four *orthosymplectic* HepLorentzVectors for the columns
124
126 const HepLorentzVector & row2,
127 const HepLorentzVector & row3,
128 const HepLorentzVector & row4 );
129 // supply four *orthosymplectic* HepLorentzVectors for the columns
130
131 inline HepLorentzRotation & set( const HepRep4x4 & rep );
132 inline HepLorentzRotation ( const HepRep4x4 & rep );
133 // supply a HepRep4x4 structure (16 numbers)
134 // WARNING:
135 // This constructor and set method will assume the
136 // HepRep4x4 supplied is in fact an orthosymplectic matrix.
137 // No checking or correction is done. If you are
138 // not certain the matrix is orthosymplectic, break it
139 // into four HepLorentzVector columns and use the form
140 // HepLorentzRotation (col1, col2, col3, col4)
141
142 // ---------- Accessors:
143
144 inline double xx() const;
145 inline double xy() const;
146 inline double xz() const;
147 inline double xt() const;
148 inline double yx() const;
149 inline double yy() const;
150 inline double yz() const;
151 inline double yt() const;
152 inline double zx() const;
153 inline double zy() const;
154 inline double zz() const;
155 inline double zt() const;
156 inline double tx() const;
157 inline double ty() const;
158 inline double tz() const;
159 inline double tt() const;
160 // Elements of the matrix.
161
162 inline HepLorentzVector col1() const;
163 inline HepLorentzVector col2() const;
164 inline HepLorentzVector col3() const;
165 inline HepLorentzVector col4() const;
166 // orthosymplectic column vectors
167
168 inline HepLorentzVector row1() const;
169 inline HepLorentzVector row2() const;
170 inline HepLorentzVector row3() const;
171 inline HepLorentzVector row4() const;
172 // orthosymplectic row vectors
173
174 inline HepRep4x4 rep4x4() const;
175 // 4x4 representation:
176
177 // ------------ Subscripting:
178
180 public:
182 inline double operator [] (int) const;
183 private:
184 const HepLorentzRotation & rr;
185 int ii;
186 };
187 // Helper class for implemention of C-style subscripting r[i][j]
188
189 inline const HepLorentzRotation_row operator [] (int) const;
190 // Returns object of the helper class for C-style subscripting r[i][j]
191
192 double operator () (int, int) const;
193 // Fortran-style subscripting: returns (i,j) element of the matrix.
194
195 // ---------- Decomposition:
196
197 void decompose (Hep3Vector & boost, HepAxisAngle & rotation) const;
198 void decompose (HepBoost & boost, HepRotation & rotation) const;
199 // Find B and R such that L = B*R
200
201 void decompose (HepAxisAngle & rotation, Hep3Vector & boost) const;
202 void decompose (HepRotation & rotation, HepBoost & boost) const;
203 // Find R and B such that L = R*B
204
205 // ---------- Comparisons:
206
207 int compare( const HepLorentzRotation & m ) const;
208 // Dictionary-order comparison, in order tt,tz,...zt,zz,zy,zx,yt,yz,...,xx
209 // Used in operator<, >, <=, >=
210
211 inline bool operator == (const HepLorentzRotation &) const;
212 inline bool operator != (const HepLorentzRotation &) const;
213 inline bool operator <= (const HepLorentzRotation &) const;
214 inline bool operator >= (const HepLorentzRotation &) const;
215 inline bool operator < (const HepLorentzRotation &) const;
216 inline bool operator > (const HepLorentzRotation &) const;
217
218 inline bool isIdentity() const;
219 // Returns true if the Identity matrix.
220
221 double distance2( const HepBoost & b ) const;
222 double distance2( const HepRotation & r ) const;
223 double distance2( const HepLorentzRotation & lt ) const;
224 // Decomposes L = B*R, returns the sum of distance2 for B and R.
225
226 double howNear( const HepBoost & b ) const;
227 double howNear( const HepRotation & r) const;
228 double howNear( const HepLorentzRotation & lt ) const;
229
230 bool isNear(const HepBoost & b,
231 double epsilon=Hep4RotationInterface::tolerance) const;
232 bool isNear(const HepRotation & r,
233 double epsilon=Hep4RotationInterface::tolerance) const;
234 bool isNear(const HepLorentzRotation & lt,
235 double epsilon=Hep4RotationInterface::tolerance) const;
236
237 // ---------- Properties:
238
239 double norm2() const;
240 // distance2 (IDENTITY), which involves decomposing into B and R and summing
241 // norm2 for the individual B and R parts.
242
243 void rectify();
244 // non-const but logically moot correction for accumulated roundoff errors
245 // rectify averages the matrix with the orthotranspose of its actual
246 // inverse (absent accumulated roundoff errors, the orthotranspose IS
247 // the inverse)); this removes to first order those errors.
248 // Then it formally decomposes that, extracts axis and delta for its
249 // Rotation part, forms a LorentzRotation from a true HepRotation
250 // with those values of axis and delta, times the true Boost
251 // with that boost vector.
252
253 // ---------- Application:
254
258 // Multiplication with a Lorentz Vector.
259
260 // ---------- Operations in the group of 4-Rotations
261
263
264 inline HepLorentzRotation operator * (const HepBoost & b) const;
267 // Product of two Lorentz Rotations (this) * lt - matrix multiplication
268
275 // Matrix multiplication.
276 // Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;
277
278 // Here there is an opportunity for speedup by providing specialized forms
279 // of lt * r and lt * b where r is a RotationX Y or Z or b is a BoostX Y or Z
280 // These are, in fact, provided below for the transform() methods.
281
282 HepLorentzRotation & rotateX(double delta);
283 // Rotation around the x-axis; equivalent to LT = RotationX(delta) * LT
284
285 HepLorentzRotation & rotateY(double delta);
286 // Rotation around the y-axis; equivalent to LT = RotationY(delta) * LT
287
288 HepLorentzRotation & rotateZ(double delta);
289 // Rotation around the z-axis; equivalent to LT = RotationZ(delta) * LT
290
291 inline HepLorentzRotation & rotate(double delta, const Hep3Vector& axis);
292 inline HepLorentzRotation & rotate(double delta, const Hep3Vector *axis);
293 // Rotation around specified vector - LT = Rotation(delta,axis)*LT
294
295 HepLorentzRotation & boostX(double beta);
296 // Pure boost along the x-axis; equivalent to LT = BoostX(beta) * LT
297
298 HepLorentzRotation & boostY(double beta);
299 // Pure boost along the y-axis; equivalent to LT = BoostX(beta) * LT
300
301 HepLorentzRotation & boostZ(double beta);
302 // Pure boost along the z-axis; equivalent to LT = BoostX(beta) * LT
303
304 inline HepLorentzRotation & boost(double, double, double);
306 // Lorenz boost.
307
309 // Return the inverse.
310
312 // Inverts the LorentzRotation matrix.
313
314 // ---------- I/O:
315
316 std::ostream & print( std::ostream & os ) const;
317 // Aligned six-digit-accurate output of the transformation matrix.
318
319 // ---------- Tolerance
320
321 static inline double getTolerance();
322 static inline double setTolerance(double tol);
323
325
326protected:
327
329 (double mxx, double mxy, double mxz, double mxt,
330 double myx, double myy, double myz, double myt,
331 double mzx, double mzy, double mzz, double mzt,
332 double mtx, double mty, double mtz, double mtt);
333 // Protected constructor.
334 // DOES NOT CHECK FOR VALIDITY AS A LORENTZ TRANSFORMATION.
335
336 inline void setBoost(double, double, double);
337 // Set elements according to a boost vector.
338
339 double mxx, mxy, mxz, mxt,
343 // The matrix elements.
344
345}; // HepLorentzRotation
346
347inline std::ostream & operator<<
348 ( std::ostream & os, const HepLorentzRotation& lt )
349 {return lt.print(os);}
350
351inline bool operator==(const HepRotation &r, const HepLorentzRotation & lt)
352 { return lt==r; }
353inline bool operator!=(const HepRotation &r, const HepLorentzRotation & lt)
354 { return lt!=r; }
355inline bool operator<=(const HepRotation &r, const HepLorentzRotation & lt)
356 { return lt<=r; }
357inline bool operator>=(const HepRotation &r, const HepLorentzRotation & lt)
358 { return lt>=r; }
359inline bool operator<(const HepRotation &r, const HepLorentzRotation & lt)
360 { return lt<r; }
361inline bool operator>(const HepRotation &r, const HepLorentzRotation & lt)
362 { return lt>r; }
363
364inline bool operator==(const HepBoost &b, const HepLorentzRotation & lt)
365 { return lt==b; }
366inline bool operator!=(const HepBoost &b, const HepLorentzRotation & lt)
367 { return lt!=b; }
368inline bool operator<=(const HepBoost &b, const HepLorentzRotation & lt)
369 { return lt<=b; }
370inline bool operator>=(const HepBoost &b, const HepLorentzRotation & lt)
371 { return lt>=b; }
372inline bool operator<(const HepBoost &b, const HepLorentzRotation & lt)
373 { return lt<b; }
374inline bool operator>(const HepBoost &b, const HepLorentzRotation & lt)
375 { return lt>b; }
376
377} // namespace CLHEP
378
379#include "CLHEP/Vector/LorentzRotation.icc"
380
381#endif /* HEP_LORENTZROTATION_H */
382
static DLL_API double tolerance
HepLorentzRotation_row(const HepLorentzRotation &, int)
double operator()(int, int) const
static DLL_API const HepLorentzRotation IDENTITY
HepLorentzVector col2() const
HepLorentzRotation(const HepRep4x4 &rep)
double howNear(const HepBoost &b) const
HepLorentzRotation & set(const HepRotationX &r)
HepLorentzVector operator*(const HepLorentzVector &p) const
bool operator>=(const HepLorentzRotation &) const
int compare(const HepLorentzRotation &m) const
HepLorentzRotation(const Hep3Vector &p)
bool operator==(const HepLorentzRotation &) const
void setBoost(double, double, double)
HepRep4x4 rep4x4() const
HepLorentzRotation & boostZ(double beta)
HepLorentzRotation & set(const Hep3Vector &p)
bool operator!=(const HepLorentzRotation &) const
HepLorentzRotation(const HepBoostZ &b)
bool operator<=(const HepLorentzRotation &) const
HepLorentzRotation & operator*=(const HepBoost &b)
HepLorentzRotation & transform(const HepLorentzRotation &lt)
void decompose(Hep3Vector &boost, HepAxisAngle &rotation) const
HepLorentzVector col3() const
HepLorentzRotation(const HepBoostX &b)
HepLorentzVector row3() const
HepLorentzRotation & setRows(const HepLorentzVector &row1, const HepLorentzVector &row2, const HepLorentzVector &row3, const HepLorentzVector &row4)
HepLorentzRotation(double bx, double by, double bz)
bool operator>(const HepLorentzRotation &) const
HepLorentzVector col4() const
HepLorentzVector col1() const
HepLorentzRotation & set(const HepRotation &r)
HepLorentzRotation(const HepLorentzRotation &r)
HepLorentzRotation & set(const HepBoostY &boost)
HepLorentzRotation & set(const HepRotationY &r)
HepLorentzRotation & boost(const Hep3Vector &)
HepLorentzRotation & rotateY(double delta)
HepLorentzRotation matrixMultiplication(const HepRep4x4 &m) const
HepLorentzRotation & rotate(double delta, const Hep3Vector *axis)
HepLorentzRotation & boost(double, double, double)
HepLorentzVector row1() const
HepLorentzRotation & boostY(double beta)
bool operator<(const HepLorentzRotation &) const
HepLorentzRotation & boostX(double beta)
HepLorentzRotation & set(const HepBoostX &boost)
HepLorentzRotation(const HepRotation &r)
HepLorentzRotation & rotateZ(double delta)
HepLorentzRotation(const HepBoostY &b)
HepLorentzRotation & set(const HepRep4x4 &rep)
HepLorentzRotation & set(const HepBoost &boost)
HepLorentzRotation & operator=(const HepLorentzRotation &m)
HepLorentzRotation(const HepBoost &b)
HepLorentzRotation & rotate(double delta, const Hep3Vector &axis)
bool isNear(const HepBoost &b, double epsilon=Hep4RotationInterface::tolerance) const
static double setTolerance(double tol)
HepLorentzRotation & set(const HepBoostZ &boost)
const HepLorentzRotation_row operator[](int) const
HepLorentzVector row2() const
std::ostream & print(std::ostream &os) const
friend HepLorentzRotation inverseOf(const HepLorentzRotation &lt)
HepLorentzRotation(const HepRotation &R, const HepBoost &B)
HepLorentzRotation(const HepRotationX &r)
HepLorentzRotation inverse() const
static double getTolerance()
HepLorentzVector row4() const
HepLorentzRotation(double mxx, double mxy, double mxz, double mxt, double myx, double myy, double myz, double myt, double mzx, double mzy, double mzz, double mzt, double mtx, double mty, double mtz, double mtt)
HepLorentzRotation(const HepRotationZ &r)
HepLorentzRotation & rotateX(double delta)
HepLorentzRotation & transform(const HepRotation &r)
HepLorentzRotation & set(const HepRotationZ &r)
HepLorentzRotation & set(double bx, double by, double bz)
HepLorentzVector vectorMultiplication(const HepLorentzVector &) const
HepLorentzVector operator()(const HepLorentzVector &w) const
HepLorentzRotation & transform(const HepBoost &b)
HepLorentzRotation(const HepRotationY &r)
HepLorentzRotation(const HepBoost &B, const HepRotation &R)
double distance2(const HepBoost &b) const
HepLorentzRotation & invert()
#define DLL_API
Definition: defs.h:19
Definition: DoubConv.h:17
bool operator>(const HepRotation &r, const HepLorentzRotation &lt)
bool operator<=(const HepRotation &r, const HepLorentzRotation &lt)
bool operator!=(shared_ptr< P > const &, shared_ptr< P2 > const &)
Definition: memory.h:1233
bool operator>=(const HepRotation &r, const HepLorentzRotation &lt)
HepLorentzRotation operator*(const HepRotation &r, const HepLorentzRotation &lt)
HepBoost inverseOf(const HepBoost &lt)
bool operator<(shared_ptr< P > const &, shared_ptr< P2 > const &)
Definition: memory.h:1240
bool operator==(shared_ptr< P > const &, shared_ptr< P2 > const &)
Definition: memory.h:1226