Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4UrbanAdjointMscModel Class Reference

#include <G4UrbanAdjointMscModel.hh>

+ Inheritance diagram for G4UrbanAdjointMscModel:

Public Member Functions

 G4UrbanAdjointMscModel (const G4String &nam="UrbanMsc")
 
 ~G4UrbanAdjointMscModel () override
 
void Initialise (const G4ParticleDefinition *, const G4DataVector &) override
 
void StartTracking (G4Track *) override
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX) override
 
G4ThreeVectorSampleScattering (const G4ThreeVector &, G4double safety) override
 
G4double ComputeTruePathLengthLimit (const G4Track &track, G4double &currentMinimalStep) override
 
G4double ComputeGeomPathLength (G4double truePathLength) override
 
G4double ComputeTrueStepLength (G4double geomStepLength) override
 
G4double ComputeTheta0 (G4double truePathLength, G4double KineticEnergy)
 
void SetNewDisplacementFlag (G4bool)
 
G4UrbanAdjointMscModeloperator= (const G4UrbanAdjointMscModel &right)=delete
 
 G4UrbanAdjointMscModel (const G4UrbanAdjointMscModel &)=delete
 
- Public Member Functions inherited from G4VMscModel
 G4VMscModel (const G4String &nam)
 
 ~G4VMscModel () override
 
void InitialiseParameters (const G4ParticleDefinition *)
 
void DumpParameters (std::ostream &out) const
 
void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double tmax) override
 
void SetStepLimitType (G4MscStepLimitType)
 
void SetLateralDisplasmentFlag (G4bool val)
 
void SetRangeFactor (G4double)
 
void SetGeomFactor (G4double)
 
void SetSkin (G4double)
 
void SetLambdaLimit (G4double)
 
void SetSafetyFactor (G4double)
 
void SetSampleZ (G4bool)
 
G4VEnergyLossProcessGetIonisation () const
 
void SetIonisation (G4VEnergyLossProcess *, const G4ParticleDefinition *part)
 
G4double ComputeSafety (const G4ThreeVector &position, G4double limit=DBL_MAX)
 
G4double ComputeGeomLimit (const G4Track &, G4double &presafety, G4double limit)
 
G4double GetDEDX (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
 
G4double GetDEDX (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple, G4double logKineticEnergy)
 
G4double GetRange (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
 
G4double GetRange (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple, G4double logKineticEnergy)
 
G4double GetEnergy (const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
 
G4double GetTransportMeanFreePath (const G4ParticleDefinition *part, G4double kinEnergy)
 
G4double GetTransportMeanFreePath (const G4ParticleDefinition *part, G4double kinEnergy, G4double logKinEnergy)
 
G4VMscModeloperator= (const G4VMscModel &right)=delete
 
 G4VMscModel (const G4VMscModel &)=delete
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel)
 
virtual void InitialiseForMaterial (const G4ParticleDefinition *, const G4Material *)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double GetPartialCrossSection (const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double ComputeCrossSectionPerShell (const G4ParticleDefinition *, G4int Z, G4int shellIdx, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double &length, G4double &eloss)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *, G4double cut=0.0)
 
virtual G4double MinEnergyCut (const G4ParticleDefinition *, const G4MaterialCutsCouple *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
virtual void FillNumberOfSecondaries (G4int &numberOfTriplets, G4int &numberOfRecoil)
 
virtual void ModelDescription (std::ostream &outFile) const
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
std::vector< G4EmElementSelector * > * GetElementSelectors ()
 
void SetElementSelectors (std::vector< G4EmElementSelector * > *)
 
G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectTargetAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementGetCurrentElement (const G4Material *mat=nullptr) const
 
G4int SelectRandomAtomNumber (const G4Material *) const
 
const G4IsotopeGetCurrentIsotope (const G4Element *elm=nullptr) const
 
G4int SelectIsotopeNumber (const G4Element *) const
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=nullptr)
 
void SetCrossSectionTable (G4PhysicsTable *, G4bool isLocal)
 
G4ElementDataGetElementData ()
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
G4VEmModelGetTripletModel ()
 
void SetTripletModel (G4VEmModel *)
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
G4bool UseAngularGeneratorFlag () const
 
void SetAngularGeneratorFlag (G4bool)
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy) const
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetDeexcitationFlag (G4bool val)
 
void SetForceBuildTable (G4bool val)
 
void SetFluctuationFlag (G4bool val)
 
void SetMasterThread (G4bool val)
 
G4bool IsMaster () const
 
void SetUseBaseMaterials (G4bool val)
 
G4bool UseBaseMaterials () const
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
G4bool IsLocked () const
 
void SetLocked (G4bool)
 
void SetLPMFlag (G4bool)
 
G4VEmModeloperator= (const G4VEmModel &right)=delete
 
 G4VEmModel (const G4VEmModel &)=delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4VMscModel
G4ParticleChangeForMSCGetParticleChangeForMSC (const G4ParticleDefinition *p=nullptr)
 
G4double ConvertTrueToGeom (G4double &tLength, G4double &gLength)
 
void SetUseSplineForMSC (G4bool val)
 
- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 
- Protected Attributes inherited from G4VMscModel
G4double facrange = 0.04
 
G4double facgeom = 2.5
 
G4double facsafety = 0.6
 
G4double skin = 1.0
 
G4double dtrl = 0.05
 
G4double lambdalimit
 
G4double geomMin
 
G4double geomMax
 
G4ThreeVector fDisplacement
 
G4MscStepLimitType steppingAlgorithm
 
G4bool samplez = false
 
G4bool latDisplasment = true
 
- Protected Attributes inherited from G4VEmModel
G4ElementDatafElementData = nullptr
 
G4VParticleChangepParticleChange = nullptr
 
G4PhysicsTablexSectionTable = nullptr
 
const G4MaterialpBaseMaterial = nullptr
 
const std::vector< G4double > * theDensityFactor = nullptr
 
const std::vector< G4int > * theDensityIdx = nullptr
 
G4double inveplus
 
G4double pFactor = 1.0
 
std::size_t currentCoupleIndex = 0
 
std::size_t basedCoupleIndex = 0
 
G4bool lossFlucFlag = true
 

Detailed Description

Definition at line 52 of file G4UrbanAdjointMscModel.hh.

Constructor & Destructor Documentation

◆ G4UrbanAdjointMscModel() [1/2]

G4UrbanAdjointMscModel::G4UrbanAdjointMscModel ( const G4String & nam = "UrbanMsc")
explicit

Definition at line 63 of file G4UrbanAdjointMscModel.cc.

64 : G4VMscModel(nam)
65{
66 masslimite = 0.6 * MeV;
67 lambdalimit = 1. * mm;
68 fr = 0.02;
69 taubig = 8.0;
70 tausmall = 1.e-16;
71 taulim = 1.e-6;
72 currentTau = taulim;
73 tlimitminfix = 0.01 * nm;
74 tlimitminfix2 = 1. * nm;
75 stepmin = tlimitminfix;
76 smallstep = 1.e10;
77 currentRange = 0.;
78 rangeinit = 0.;
79 tlimit = 1.e10 * mm;
80 tlimitmin = 10. * tlimitminfix;
81 tgeom = 1.e50 * mm;
82 geombig = 1.e50 * mm;
83 geommin = 1.e-3 * mm;
84 geomlimit = geombig;
85 presafety = 0. * mm;
86
87 facsafety = 0.6;
88
89 Zold = 0.;
90 Zeff = 1.;
91 Z2 = 1.;
92 Z23 = 1.;
93 lnZ = 0.;
94 coeffth1 = 0.;
95 coeffth2 = 0.;
96 coeffc1 = 0.;
97 coeffc2 = 0.;
98 coeffc3 = 0.;
99 coeffc4 = 0.;
100 particle = nullptr;
101
102 positron = G4Positron::Positron();
103 theManager = G4LossTableManager::Instance();
104 rndmEngineMod = G4Random::getTheEngine();
105
106 firstStep = true;
107 insideskin = false;
108 latDisplasmentbackup = false;
109 displacementFlag = true;
110
111 rangecut = geombig;
112 drr = 0.35;
113 finalr = 10. * um;
114
115 skindepth = skin * stepmin;
116
117 mass = proton_mass_c2;
118 charge = ChargeSquare = 1.0;
119 currentKinEnergy = currentRadLength = lambda0 = lambdaeff = tPathLength =
120 zPathLength = par1 = par2 = par3 = 0.;
121
122 currentMaterialIndex = -1;
123 fParticleChange = nullptr;
124 couple = nullptr;
125}
static G4LossTableManager * Instance()
static G4Positron * Positron()
Definition G4Positron.cc:90
G4double skin
G4VMscModel(const G4String &nam)
G4double facsafety

◆ ~G4UrbanAdjointMscModel()

G4UrbanAdjointMscModel::~G4UrbanAdjointMscModel ( )
override

Definition at line 128 of file G4UrbanAdjointMscModel.cc.

128{}

◆ G4UrbanAdjointMscModel() [2/2]

G4UrbanAdjointMscModel::G4UrbanAdjointMscModel ( const G4UrbanAdjointMscModel & )
delete

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4UrbanAdjointMscModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition * particle,
G4double KineticEnergy,
G4double AtomicNumber,
G4double AtomicWeight = 0.,
G4double cut = 0.,
G4double emax = DBL_MAX )
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 148 of file G4UrbanAdjointMscModel.cc.

151{
152 static constexpr G4double epsmin = 1.e-4;
153 static constexpr G4double epsmax = 1.e10;
154
155 static constexpr G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38.,
156 47., 50., 56., 64., 74., 79., 82. };
157
158 // corr. factors for e-/e+ lambda for T <= Tlim
159 static constexpr G4double celectron[15][22] = {
160 { 1.125, 1.072, 1.051, 1.047, 1.047, 1.050, 1.052, 1.054,
161 1.054, 1.057, 1.062, 1.069, 1.075, 1.090, 1.105, 1.111,
162 1.112, 1.108, 1.100, 1.093, 1.089, 1.087 },
163 { 1.408, 1.246, 1.143, 1.096, 1.077, 1.059, 1.053, 1.051,
164 1.052, 1.053, 1.058, 1.065, 1.072, 1.087, 1.101, 1.108,
165 1.109, 1.105, 1.097, 1.090, 1.086, 1.082 },
166 { 2.833, 2.268, 1.861, 1.612, 1.486, 1.309, 1.204, 1.156,
167 1.136, 1.114, 1.106, 1.106, 1.109, 1.119, 1.129, 1.132,
168 1.131, 1.124, 1.113, 1.104, 1.099, 1.098 },
169 { 3.879, 3.016, 2.380, 2.007, 1.818, 1.535, 1.340, 1.236,
170 1.190, 1.133, 1.107, 1.099, 1.098, 1.103, 1.110, 1.113,
171 1.112, 1.105, 1.096, 1.089, 1.085, 1.098 },
172 { 6.937, 4.330, 2.886, 2.256, 1.987, 1.628, 1.395, 1.265,
173 1.203, 1.122, 1.080, 1.065, 1.061, 1.063, 1.070, 1.073,
174 1.073, 1.070, 1.064, 1.059, 1.056, 1.056 },
175 { 9.616, 5.708, 3.424, 2.551, 2.204, 1.762, 1.485, 1.330,
176 1.256, 1.155, 1.099, 1.077, 1.070, 1.068, 1.072, 1.074,
177 1.074, 1.070, 1.063, 1.059, 1.056, 1.052 },
178 { 11.72, 6.364, 3.811, 2.806, 2.401, 1.884, 1.564, 1.386,
179 1.300, 1.180, 1.112, 1.082, 1.073, 1.066, 1.068, 1.069,
180 1.068, 1.064, 1.059, 1.054, 1.051, 1.050 },
181 { 18.08, 8.601, 4.569, 3.183, 2.662, 2.025, 1.646, 1.439,
182 1.339, 1.195, 1.108, 1.068, 1.053, 1.040, 1.039, 1.039,
183 1.039, 1.037, 1.034, 1.031, 1.030, 1.036 },
184 { 18.22, 10.48, 5.333, 3.713, 3.115, 2.367, 1.898, 1.631,
185 1.498, 1.301, 1.171, 1.105, 1.077, 1.048, 1.036, 1.033,
186 1.031, 1.028, 1.024, 1.022, 1.021, 1.024 },
187 { 14.14, 10.65, 5.710, 3.929, 3.266, 2.453, 1.951, 1.669,
188 1.528, 1.319, 1.178, 1.106, 1.075, 1.040, 1.027, 1.022,
189 1.020, 1.017, 1.015, 1.013, 1.013, 1.020 },
190 { 14.11, 11.73, 6.312, 4.240, 3.478, 2.566, 2.022, 1.720,
191 1.569, 1.342, 1.186, 1.102, 1.065, 1.022, 1.003, 0.997,
192 0.995, 0.993, 0.993, 0.993, 0.993, 1.011 },
193 { 22.76, 20.01, 8.835, 5.287, 4.144, 2.901, 2.219, 1.855,
194 1.677, 1.410, 1.224, 1.121, 1.073, 1.014, 0.986, 0.976,
195 0.974, 0.972, 0.973, 0.974, 0.975, 0.987 },
196 { 50.77, 40.85, 14.13, 7.184, 5.284, 3.435, 2.520, 2.059,
197 1.837, 1.512, 1.283, 1.153, 1.091, 1.010, 0.969, 0.954,
198 0.950, 0.947, 0.949, 0.952, 0.954, 0.963 },
199 { 65.87, 59.06, 15.87, 7.570, 5.567, 3.650, 2.682, 2.182,
200 1.939, 1.579, 1.325, 1.178, 1.108, 1.014, 0.965, 0.947,
201 0.941, 0.938, 0.940, 0.944, 0.946, 0.954 },
202 { 55.60, 47.34, 15.92, 7.810, 5.755, 3.767, 2.760, 2.239,
203 1.985, 1.609, 1.343, 1.188, 1.113, 1.013, 0.960, 0.939,
204 0.933, 0.930, 0.933, 0.936, 0.939, 0.949 }
205 };
206
207 static constexpr G4double cpositron[15][22] = {
208 { 2.589, 2.044, 1.658, 1.446, 1.347, 1.217, 1.144, 1.110,
209 1.097, 1.083, 1.080, 1.086, 1.092, 1.108, 1.123, 1.131,
210 1.131, 1.126, 1.117, 1.108, 1.103, 1.100 },
211 { 3.904, 2.794, 2.079, 1.710, 1.543, 1.325, 1.202, 1.145,
212 1.122, 1.096, 1.089, 1.092, 1.098, 1.114, 1.130, 1.137,
213 1.138, 1.132, 1.122, 1.113, 1.108, 1.102 },
214 { 7.970, 6.080, 4.442, 3.398, 2.872, 2.127, 1.672, 1.451,
215 1.357, 1.246, 1.194, 1.179, 1.178, 1.188, 1.201, 1.205,
216 1.203, 1.190, 1.173, 1.159, 1.151, 1.145 },
217 { 9.714, 7.607, 5.747, 4.493, 3.815, 2.777, 2.079, 1.715,
218 1.553, 1.353, 1.253, 1.219, 1.211, 1.214, 1.225, 1.228,
219 1.225, 1.210, 1.191, 1.175, 1.166, 1.174 },
220 { 17.97, 12.95, 8.628, 6.065, 4.849, 3.222, 2.275, 1.820,
221 1.624, 1.382, 1.259, 1.214, 1.202, 1.202, 1.214, 1.219,
222 1.217, 1.203, 1.184, 1.169, 1.160, 1.151 },
223 { 24.83, 17.06, 10.84, 7.355, 5.767, 3.707, 2.546, 1.996,
224 1.759, 1.465, 1.311, 1.252, 1.234, 1.228, 1.238, 1.241,
225 1.237, 1.222, 1.201, 1.184, 1.174, 1.159 },
226 { 23.26, 17.15, 11.52, 8.049, 6.375, 4.114, 2.792, 2.155,
227 1.880, 1.535, 1.353, 1.281, 1.258, 1.247, 1.254, 1.256,
228 1.252, 1.234, 1.212, 1.194, 1.183, 1.170 },
229 { 22.33, 18.01, 12.86, 9.212, 7.336, 4.702, 3.117, 2.348,
230 2.015, 1.602, 1.385, 1.297, 1.268, 1.251, 1.256, 1.258,
231 1.254, 1.237, 1.214, 1.195, 1.185, 1.179 },
232 { 33.91, 24.13, 15.71, 10.80, 8.507, 5.467, 3.692, 2.808,
233 2.407, 1.873, 1.564, 1.425, 1.374, 1.330, 1.324, 1.320,
234 1.312, 1.288, 1.258, 1.235, 1.221, 1.205 },
235 { 32.14, 24.11, 16.30, 11.40, 9.015, 5.782, 3.868, 2.917,
236 2.490, 1.925, 1.596, 1.447, 1.391, 1.342, 1.332, 1.327,
237 1.320, 1.294, 1.264, 1.240, 1.226, 1.214 },
238 { 29.51, 24.07, 17.19, 12.28, 9.766, 6.238, 4.112, 3.066,
239 2.602, 1.995, 1.641, 1.477, 1.414, 1.356, 1.342, 1.336,
240 1.328, 1.302, 1.270, 1.245, 1.231, 1.233 },
241 { 38.19, 30.85, 21.76, 15.35, 12.07, 7.521, 4.812, 3.498,
242 2.926, 2.188, 1.763, 1.563, 1.484, 1.405, 1.382, 1.371,
243 1.361, 1.330, 1.294, 1.267, 1.251, 1.239 },
244 { 49.71, 39.80, 27.96, 19.63, 15.36, 9.407, 5.863, 4.155,
245 3.417, 2.478, 1.944, 1.692, 1.589, 1.480, 1.441, 1.423,
246 1.409, 1.372, 1.330, 1.298, 1.280, 1.258 },
247 { 59.25, 45.08, 30.36, 20.83, 16.15, 9.834, 6.166, 4.407,
248 3.641, 2.648, 2.064, 1.779, 1.661, 1.531, 1.482, 1.459,
249 1.442, 1.400, 1.354, 1.319, 1.299, 1.272 },
250 { 56.38, 44.29, 30.50, 21.18, 16.51, 10.11, 6.354, 4.542,
251 3.752, 2.724, 2.116, 1.817, 1.692, 1.554, 1.499, 1.474,
252 1.456, 1.412, 1.364, 1.328, 1.307, 1.282 }
253 };
254
255 // data/corrections for T > Tlim
256 static constexpr G4double hecorr[15] = { 120.70, 117.50, 105.00, 92.92,
257 79.23, 74.510, 68.29, 57.39,
258 41.97, 36.14, 24.53, 10.21,
259 -7.855, -16.84, -22.30 };
260
261 G4double sigma;
262 SetParticle(part);
263
264 Z23 = G4Pow::GetInstance()->Z23(G4lrint(AtomicNumber));
265
266 // correction if particle .ne. e-/e+
267 // compute equivalent kinetic energy
268 // lambda depends on p*beta ....
269
270 G4double eKineticEnergy = KineticEnergy;
271
272 if(mass > electron_mass_c2)
273 {
274 G4double tau1 = KineticEnergy / mass;
275 G4double c = mass * tau1 * (tau1 + 2.) / (electron_mass_c2 * (tau1 + 1.));
276 G4double w = c - 2.;
277 G4double tau = 0.5 * (w + sqrt(w * w + 4. * c));
278 eKineticEnergy = electron_mass_c2 * tau;
279 }
280
281 G4double eTotalEnergy = eKineticEnergy + electron_mass_c2;
282 G4double beta2 = eKineticEnergy * (eTotalEnergy + electron_mass_c2) /
283 (eTotalEnergy * eTotalEnergy);
284 G4double bg2 = eKineticEnergy * (eTotalEnergy + electron_mass_c2) /
285 (electron_mass_c2 * electron_mass_c2);
286
287 static constexpr G4double epsfactor =
288 2. * CLHEP::electron_mass_c2 * CLHEP::electron_mass_c2 *
289 CLHEP::Bohr_radius * CLHEP::Bohr_radius / (CLHEP::hbarc * CLHEP::hbarc);
290 G4double eps = epsfactor * bg2 / Z23;
291
292 if(eps < epsmin)
293 sigma = 2. * eps * eps;
294 else if(eps < epsmax)
295 sigma = G4Log(1. + 2. * eps) - 2. * eps / (1. + 2. * eps);
296 else
297 sigma = G4Log(2. * eps) - 1. + 1. / eps;
298
299 sigma *= ChargeSquare * AtomicNumber * AtomicNumber / (beta2 * bg2);
300
301 // interpolate in AtomicNumber and beta2
302 G4double c1, c2, cc1, cc2, corr;
303
304 // get bin number in Z
305 G4int iZ = 14;
306 while((iZ >= 0) && (Zdat[iZ] >= AtomicNumber))
307 iZ -= 1;
308 if(iZ == 14)
309 iZ = 13;
310 if(iZ == -1)
311 iZ = 0;
312
313 G4double ZZ1 = Zdat[iZ];
314 G4double ZZ2 = Zdat[iZ + 1];
315 G4double ratZ =
316 (AtomicNumber - ZZ1) * (AtomicNumber + ZZ1) / ((ZZ2 - ZZ1) * (ZZ2 + ZZ1));
317
318 static constexpr G4double Tlim = 10. * CLHEP::MeV;
319 static constexpr G4double sigmafactor =
320 CLHEP::twopi * CLHEP::classic_electr_radius * CLHEP::classic_electr_radius;
321 static const G4double beta2lim =
322 Tlim * (Tlim + 2. * CLHEP::electron_mass_c2) /
323 ((Tlim + CLHEP::electron_mass_c2) * (Tlim + CLHEP::electron_mass_c2));
324 static const G4double bg2lim =
325 Tlim * (Tlim + 2. * CLHEP::electron_mass_c2) /
326 (CLHEP::electron_mass_c2 * CLHEP::electron_mass_c2);
327
328 static constexpr G4double sig0[15] = {
329 0.2672 * CLHEP::barn, 0.5922 * CLHEP::barn, 2.653 * CLHEP::barn,
330 6.235 * CLHEP::barn, 11.69 * CLHEP::barn, 13.24 * CLHEP::barn,
331 16.12 * CLHEP::barn, 23.00 * CLHEP::barn, 35.13 * CLHEP::barn,
332 39.95 * CLHEP::barn, 50.85 * CLHEP::barn, 67.19 * CLHEP::barn,
333 91.15 * CLHEP::barn, 104.4 * CLHEP::barn, 113.1 * CLHEP::barn
334 };
335
336 static constexpr G4double Tdat[22] = {
337 100 * CLHEP::eV, 200 * CLHEP::eV, 400 * CLHEP::eV, 700 * CLHEP::eV,
338 1 * CLHEP::keV, 2 * CLHEP::keV, 4 * CLHEP::keV, 7 * CLHEP::keV,
339 10 * CLHEP::keV, 20 * CLHEP::keV, 40 * CLHEP::keV, 70 * CLHEP::keV,
340 100 * CLHEP::keV, 200 * CLHEP::keV, 400 * CLHEP::keV, 700 * CLHEP::keV,
341 1 * CLHEP::MeV, 2 * CLHEP::MeV, 4 * CLHEP::MeV, 7 * CLHEP::MeV,
342 10 * CLHEP::MeV, 20 * CLHEP::MeV
343 };
344
345 if(eKineticEnergy <= Tlim)
346 {
347 // get bin number in T (beta2)
348 G4int iT = 21;
349 while((iT >= 0) && (Tdat[iT] >= eKineticEnergy))
350 iT -= 1;
351 if(iT == 21)
352 iT = 20;
353 if(iT == -1)
354 iT = 0;
355
356 // calculate betasquare values
357 G4double T = Tdat[iT], E = T + electron_mass_c2;
358 G4double b2small = T * (E + electron_mass_c2) / (E * E);
359
360 T = Tdat[iT + 1];
361 E = T + electron_mass_c2;
362 G4double b2big = T * (E + electron_mass_c2) / (E * E);
363 G4double ratb2 = (beta2 - b2small) / (b2big - b2small);
364
365 if(charge < 0.)
366 {
367 c1 = celectron[iZ][iT];
368 c2 = celectron[iZ + 1][iT];
369 cc1 = c1 + ratZ * (c2 - c1);
370
371 c1 = celectron[iZ][iT + 1];
372 c2 = celectron[iZ + 1][iT + 1];
373 cc2 = c1 + ratZ * (c2 - c1);
374
375 corr = cc1 + ratb2 * (cc2 - cc1);
376
377 sigma *= sigmafactor / corr;
378 }
379 else
380 {
381 c1 = cpositron[iZ][iT];
382 c2 = cpositron[iZ + 1][iT];
383 cc1 = c1 + ratZ * (c2 - c1);
384
385 c1 = cpositron[iZ][iT + 1];
386 c2 = cpositron[iZ + 1][iT + 1];
387 cc2 = c1 + ratZ * (c2 - c1);
388
389 corr = cc1 + ratb2 * (cc2 - cc1);
390
391 sigma *= sigmafactor / corr;
392 }
393 }
394 else
395 {
396 c1 = bg2lim * sig0[iZ] * (1. + hecorr[iZ] * (beta2 - beta2lim)) / bg2;
397 c2 =
398 bg2lim * sig0[iZ + 1] * (1. + hecorr[iZ + 1] * (beta2 - beta2lim)) / bg2;
399 if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
400 sigma = c1 + ratZ * (c2 - c1);
401 else if(AtomicNumber < ZZ1)
402 sigma = AtomicNumber * AtomicNumber * c1 / (ZZ1 * ZZ1);
403 else if(AtomicNumber > ZZ2)
404 sigma = AtomicNumber * AtomicNumber * c2 / (ZZ2 * ZZ2);
405 }
406 return sigma;
407}
G4double G4Log(G4double x)
Definition G4Log.hh:227
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double Z23(G4int Z) const
Definition G4Pow.hh:125
int G4lrint(double ad)
Definition templates.hh:134

◆ ComputeGeomPathLength()

G4double G4UrbanAdjointMscModel::ComputeGeomPathLength ( G4double truePathLength)
overridevirtual

Implements G4VMscModel.

Definition at line 731 of file G4UrbanAdjointMscModel.cc.

732{
733 lambdaeff = lambda0;
734 par1 = -1.;
735 par2 = par3 = 0.;
736
737 // this correction needed to run MSC with eIoni and eBrem inactivated
738 // and makes no harm for a normal run
739 tPathLength = std::min(tPathLength, currentRange);
740
741 // do the true -> geom transformation
742 zPathLength = tPathLength;
743
744 // z = t for very small tPathLength
745 if(tPathLength < tlimitminfix2)
746 return zPathLength;
747
748 G4double tau = tPathLength / lambda0;
749
750 if((tau <= tausmall) || insideskin)
751 {
752 zPathLength = min(tPathLength, lambda0);
753 }
754 else if(tPathLength < currentRange * dtrl)
755 {
756 if(tau < taulim)
757 zPathLength = tPathLength * (1. - 0.5 * tau);
758 else
759 zPathLength = lambda0 * (1. - G4Exp(-tau));
760 }
761 else if(currentKinEnergy < mass || tPathLength == currentRange)
762 {
763 par1 = 1. / currentRange;
764 par2 = 1. / (par1 * lambda0);
765 par3 = 1. + par2;
766 if(tPathLength < currentRange)
767 {
768 zPathLength =
769 (1. - G4Exp(par3 * G4Log(1. - tPathLength / currentRange))) /
770 (par1 * par3);
771 }
772 else
773 {
774 zPathLength = 1. / (par1 * par3);
775 }
776 }
777 else
778 {
779 G4double rfin = max(currentRange - tPathLength, 0.01 * currentRange);
780 G4double T1 = GetEnergy(particle, rfin, couple);
781 G4double lambda1 = GetTransportMeanFreePath(particle, T1);
782
783 par1 = (lambda0 - lambda1) / (lambda0 * tPathLength);
784 par2 = 1. / (par1 * lambda0);
785 par3 = 1. + par2;
786 zPathLength = (1. - G4Exp(par3 * G4Log(lambda1 / lambda0))) / (par1 * par3);
787 }
788
789 zPathLength = min(zPathLength, lambda0);
790 return zPathLength;
791}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double dtrl
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
T max(const T t1, const T t2)
brief Return the largest of the two arguments
T min(const T t1, const T t2)
brief Return the smallest of the two arguments

◆ ComputeTheta0()

G4double G4UrbanAdjointMscModel::ComputeTheta0 ( G4double truePathLength,
G4double KineticEnergy )

Definition at line 1070 of file G4UrbanAdjointMscModel.cc.

1072{
1073 // for all particles take the width of the central part
1074 // from a parametrization similar to the Highland formula
1075 // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
1076 G4double invbetacp =
1077 std::sqrt((currentKinEnergy + mass) * (KineticEnergy + mass) /
1078 (currentKinEnergy * (currentKinEnergy + 2. * mass) *
1079 KineticEnergy * (KineticEnergy + 2. * mass)));
1080 G4double y = trueStepLength / currentRadLength;
1081
1082 if(particle == positron)
1083 {
1084 static constexpr G4double xl = 0.6;
1085 static constexpr G4double xh = 0.9;
1086 static constexpr G4double e = 113.0;
1087 G4double corr;
1088
1089 G4double tau = std::sqrt(currentKinEnergy * KineticEnergy) / mass;
1090 G4double x = std::sqrt(tau * (tau + 2.) / ((tau + 1.) * (tau + 1.)));
1091 G4double a = 0.994 - 4.08e-3 * Zeff;
1092 G4double b = 7.16 + (52.6 + 365. / Zeff) / Zeff;
1093 G4double c = 1.000 - 4.47e-3 * Zeff;
1094 G4double d = 1.21e-3 * Zeff;
1095 if(x < xl)
1096 {
1097 corr = a * (1. - G4Exp(-b * x));
1098 }
1099 else if(x > xh)
1100 {
1101 corr = c + d * G4Exp(e * (x - 1.));
1102 }
1103 else
1104 {
1105 G4double yl = a * (1. - G4Exp(-b * xl));
1106 G4double yh = c + d * G4Exp(e * (xh - 1.));
1107 G4double y0 = (yh - yl) / (xh - xl);
1108 G4double y1 = yl - y0 * xl;
1109 corr = y0 * x + y1;
1110 }
1111 y *= corr * (1. + Zeff * (1.84035e-4 * Zeff - 1.86427e-2) + 0.41125);
1112 }
1113
1114 static constexpr G4double c_highland = 13.6 * CLHEP::MeV;
1115 G4double theta0 = c_highland * std::abs(charge) * std::sqrt(y) * invbetacp;
1116
1117 // correction factor from e- scattering data
1118 theta0 *= (coeffth1 + coeffth2 * G4Log(y));
1119 return theta0;
1120}

◆ ComputeTruePathLengthLimit()

G4double G4UrbanAdjointMscModel::ComputeTruePathLengthLimit ( const G4Track & track,
G4double & currentMinimalStep )
overridevirtual

Implements G4VMscModel.

Definition at line 424 of file G4UrbanAdjointMscModel.cc.

426{
427 tPathLength = currentMinimalStep;
428 const G4DynamicParticle* dp = track.GetDynamicParticle();
429
431 G4StepStatus stepStatus = sp->GetStepStatus();
432 couple = track.GetMaterialCutsCouple();
433 SetCurrentCouple(couple);
434 currentMaterialIndex = couple->GetIndex();
435 currentKinEnergy = dp->GetKineticEnergy();
436
437 currentRange = GetRange(particle, currentKinEnergy, couple);
438 lambda0 = GetTransportMeanFreePath(particle, currentKinEnergy);
439 tPathLength = min(tPathLength, currentRange);
440
441 // set flag to default values
442 Zeff = couple->GetMaterial()->GetIonisation()->GetZeffective();
443
444 if(Zold != Zeff)
445 UpdateCache();
446
447 // stop here if small step
448 if(tPathLength < tlimitminfix)
449 {
450 latDisplasment = false;
451 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
452 }
453
454 // upper limit for the straight line distance the particle can travel
455 // for electrons and positrons
456 G4double distance = currentRange;
457 // for muons, hadrons
458 if(mass > masslimite)
459 {
460 distance *= (1.15 - 9.76e-4 * Zeff);
461 }
462 else
463 {
464 distance *= (1.20 - Zeff * (1.62e-2 - 9.22e-5 * Zeff));
465 }
466 presafety = sp->GetSafety();
467
468 // far from geometry boundary
469 if(distance < presafety)
470 {
471 latDisplasment = false;
472 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
473 }
474
475 latDisplasment = latDisplasmentbackup;
476 static constexpr G4double invmev = 1.0 / CLHEP::MeV;
477
478 // standard version
480 {
481 // compute geomlimit and presafety
482 geomlimit = ComputeGeomLimit(track, presafety, currentRange);
483
484 // is it far from boundary ?
485 if(distance < presafety)
486 {
487 latDisplasment = false;
488 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
489 }
490
491 smallstep += 1.;
492 insideskin = false;
493
494 // initialisation at firs step and at the boundary
495 if(firstStep || (stepStatus == fGeomBoundary))
496 {
497 rangeinit = currentRange;
498 if(!firstStep)
499 {
500 smallstep = 1.;
501 }
502
503 // define stepmin here (it depends on lambda!)
504 // rough estimation of lambda_elastic/lambda_transport
505 G4double rat = currentKinEnergy * invmev;
506 rat = 1.e-3 / (rat * (10. + rat));
507 // stepmin ~ lambda_elastic
508 stepmin = rat * lambda0;
509 skindepth = skin * stepmin;
510 tlimitmin = max(10 * stepmin, tlimitminfix);
511
512 // constraint from the geometry
513 if((geomlimit < geombig) && (geomlimit > geommin))
514 {
515 // geomlimit is a geometrical step length
516 // transform it to true path length (estimation)
517 if((1. - geomlimit / lambda0) > 0.)
518 geomlimit = -lambda0 * G4Log(1. - geomlimit / lambda0) + tlimitmin;
519
520 if(stepStatus == fGeomBoundary)
521 tgeom = geomlimit / facgeom;
522 else
523 tgeom = 2. * geomlimit / facgeom;
524 }
525 else
526 tgeom = geombig;
527 }
528
529 // step limit
530 tlimit = facrange * rangeinit;
531
532 // lower limit for tlimit
533 tlimit = max(tlimit, tlimitmin);
534 tlimit = min(tlimit, tgeom);
535
536 // shortcut
537 if((tPathLength < tlimit) && (tPathLength < presafety) &&
538 (smallstep > skin) && (tPathLength < geomlimit - 0.999 * skindepth))
539 {
540 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
541 }
542
543 // step reduction near to boundary
544 if(smallstep <= skin)
545 {
546 tlimit = stepmin;
547 insideskin = true;
548 }
549 else if(geomlimit < geombig)
550 {
551 if(geomlimit > skindepth)
552 {
553 tlimit = min(tlimit, geomlimit - 0.999 * skindepth);
554 }
555 else
556 {
557 insideskin = true;
558 tlimit = min(tlimit, stepmin);
559 }
560 }
561
562 tlimit = max(tlimit, stepmin);
563
564 // randomise if not 'small' step and step determined by msc
565 if((tlimit < tPathLength) && (smallstep > skin) && !insideskin)
566 {
567 tPathLength = min(tPathLength, Randomizetlimit());
568 }
569 else
570 {
571 tPathLength = min(tPathLength, tlimit);
572 }
573 }
574 // for 'normal' simulation with or without magnetic field
575 // there no small step/single scattering at boundaries
576 else if(steppingAlgorithm == fUseSafety)
577 {
578 if(stepStatus != fGeomBoundary)
579 {
580 presafety = ComputeSafety(sp->GetPosition(), tPathLength);
581 }
582 // is far from boundary
583 if(distance < presafety)
584 {
585 latDisplasment = false;
586 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
587 }
588
589 if(firstStep || (stepStatus == fGeomBoundary))
590 {
591 rangeinit = currentRange;
592 fr = facrange;
593 // Geant4 version 9.1 like stepping for e+/e- only (not for muons,hadrons)
594 if(mass < masslimite)
595 {
596 rangeinit = max(rangeinit, lambda0);
597 if(lambda0 > lambdalimit)
598 {
599 fr *= (0.75 + 0.25 * lambda0 / lambdalimit);
600 }
601 }
602 // lower limit for tlimit
603 G4double rat = currentKinEnergy * invmev;
604 rat = 1.e-3 / (rat * (10 + rat));
605 stepmin = lambda0 * rat;
606 tlimitmin = max(10 * stepmin, tlimitminfix);
607 }
608
609 // step limit
610 tlimit = max(fr * rangeinit, facsafety * presafety);
611
612 // lower limit for tlimit
613 tlimit = max(tlimit, tlimitmin);
614
615 // randomise if step determined by msc
616 if(tlimit < tPathLength)
617 {
618 tPathLength = min(tPathLength, Randomizetlimit());
619 }
620 else
621 {
622 tPathLength = min(tPathLength, tlimit);
623 }
624 }
625 // new stepping mode UseSafetyPlus
627 {
628 if(stepStatus != fGeomBoundary)
629 {
630 presafety = ComputeSafety(sp->GetPosition(), tPathLength);
631 }
632
633 // is far from boundary
634 if(distance < presafety)
635 {
636 latDisplasment = false;
637 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
638 }
639
640 if(firstStep || (stepStatus == fGeomBoundary))
641 {
642 rangeinit = currentRange;
643 fr = facrange;
644 rangecut = geombig;
645 if(mass < masslimite)
646 {
647 G4int index = 1;
648 if(charge > 0.)
649 index = 2;
650 rangecut = couple->GetProductionCuts()->GetProductionCut(index);
651 if(lambda0 > lambdalimit)
652 {
653 fr *= (0.84 + 0.16 * lambda0 / lambdalimit);
654 }
655 }
656 // lower limit for tlimit
657 G4double rat = currentKinEnergy * invmev;
658 rat = 1.e-3 / (rat * (10 + rat));
659 stepmin = lambda0 * rat;
660 tlimitmin = max(10 * stepmin, tlimitminfix);
661 }
662 // step limit
663 tlimit = max(fr * rangeinit, facsafety * presafety);
664
665 // lower limit for tlimit
666 tlimit = max(tlimit, tlimitmin);
667
668 // condition for tPathLength from drr and finalr
669 if(currentRange > finalr)
670 {
671 G4double tmax =
672 drr * currentRange + finalr * (1. - drr) * (2. - finalr / currentRange);
673 tPathLength = min(tPathLength, tmax);
674 }
675
676 // condition safety
677 if(currentRange > rangecut)
678 {
679 if(firstStep)
680 {
681 tPathLength = min(tPathLength, facsafety * presafety);
682 }
683 else if(stepStatus != fGeomBoundary && presafety > stepmin)
684 {
685 tPathLength = min(tPathLength, presafety);
686 }
687 }
688
689 // randomise if step determined by msc
690 if(tPathLength < tlimit)
691 {
692 tPathLength = min(tPathLength, Randomizetlimit());
693 }
694 else
695 {
696 tPathLength = min(tPathLength, tlimit);
697 }
698 }
699
700 // version similar to 7.1 (needed for some experiments)
701 else
702 {
703 if(stepStatus == fGeomBoundary)
704 {
705 if(currentRange > lambda0)
706 {
707 tlimit = facrange * currentRange;
708 }
709 else
710 {
711 tlimit = facrange * lambda0;
712 }
713
714 tlimit = max(tlimit, tlimitmin);
715 }
716 // randomise if step determined by msc
717 if(tlimit < tPathLength)
718 {
719 tPathLength = min(tPathLength, Randomizetlimit());
720 }
721 else
722 {
723 tPathLength = min(tPathLength, tlimit);
724 }
725 }
726 firstStep = false;
727 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
728}
@ fUseSafety
@ fUseSafetyPlus
@ fUseDistanceToBoundary
G4StepStatus
@ fGeomBoundary
G4double GetKineticEnergy() const
G4double GetZeffective() const
const G4Material * GetMaterial() const
G4ProductionCuts * GetProductionCuts() const
G4IonisParamMat * GetIonisation() const
G4double GetProductionCut(G4int index) const
G4StepPoint * GetPreStepPoint() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
const G4Step * GetStep() const
void SetCurrentCouple(const G4MaterialCutsCouple *)
G4double facrange
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
G4MscStepLimitType steppingAlgorithm
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
G4bool latDisplasment
G4double ComputeSafety(const G4ThreeVector &position, G4double limit=DBL_MAX)
G4double facgeom

◆ ComputeTrueStepLength()

G4double G4UrbanAdjointMscModel::ComputeTrueStepLength ( G4double geomStepLength)
overridevirtual

Implements G4VMscModel.

Definition at line 794 of file G4UrbanAdjointMscModel.cc.

795{
796 // step defined other than transportation
797 if(geomStepLength == zPathLength)
798 {
799 return tPathLength;
800 }
801
802 zPathLength = geomStepLength;
803
804 // t = z for very small step
805 if(geomStepLength < tlimitminfix2)
806 {
807 tPathLength = geomStepLength;
808
809 // recalculation
810 }
811 else
812 {
813 G4double tlength = geomStepLength;
814 if((geomStepLength > lambda0 * tausmall) && !insideskin)
815 {
816 if(par1 < 0.)
817 {
818 tlength = -lambda0 * G4Log(1. - geomStepLength / lambda0);
819 }
820 else
821 {
822 if(par1 * par3 * geomStepLength < 1.)
823 {
824 tlength =
825 (1. - G4Exp(G4Log(1. - par1 * par3 * geomStepLength) / par3)) /
826 par1;
827 }
828 else
829 {
830 tlength = currentRange;
831 }
832 }
833
834 if(tlength < geomStepLength)
835 {
836 tlength = geomStepLength;
837 }
838 else if(tlength > tPathLength)
839 {
840 tlength = tPathLength;
841 }
842 }
843 tPathLength = tlength;
844 }
845
846 return tPathLength;
847}

◆ Initialise()

void G4UrbanAdjointMscModel::Initialise ( const G4ParticleDefinition * p,
const G4DataVector &  )
overridevirtual

Implements G4VEmModel.

Definition at line 131 of file G4UrbanAdjointMscModel.cc.

133{
134 const G4ParticleDefinition* p1 = p;
135
136 if(p->GetParticleName() == "adj_e-")
138 // set values of some data members
139 SetParticle(p1);
140
141 fParticleChange = GetParticleChangeForMSC(p1);
142
143 latDisplasmentbackup = latDisplasment;
144}
static G4Electron * Electron()
Definition G4Electron.cc:91
const G4String & GetParticleName() const
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=nullptr)

◆ operator=()

G4UrbanAdjointMscModel & G4UrbanAdjointMscModel::operator= ( const G4UrbanAdjointMscModel & right)
delete

◆ SampleScattering()

G4ThreeVector & G4UrbanAdjointMscModel::SampleScattering ( const G4ThreeVector & oldDirection,
G4double safety )
overridevirtual

Implements G4VMscModel.

Definition at line 850 of file G4UrbanAdjointMscModel.cc.

852{
853 fDisplacement.set(0.0, 0.0, 0.0);
854 G4double kineticEnergy = currentKinEnergy;
855 if(tPathLength > currentRange * dtrl)
856 {
857 kineticEnergy = GetEnergy(particle, currentRange - tPathLength, couple);
858 }
859 else
860 {
861 kineticEnergy -= tPathLength * GetDEDX(particle, currentKinEnergy, couple);
862 }
863
864 if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
865 (tPathLength < tausmall * lambda0))
866 {
867 return fDisplacement;
868 }
869
870 G4double cth = SampleCosineTheta(tPathLength, kineticEnergy);
871
872 // protection against 'bad' cth values
873 if(std::fabs(cth) >= 1.0)
874 {
875 return fDisplacement;
876 }
877
878 G4double sth = sqrt((1.0 - cth) * (1.0 + cth));
879 G4double phi = twopi * rndmEngineMod->flat();
880 G4double dirx = sth * cos(phi);
881 G4double diry = sth * sin(phi);
882
883 G4ThreeVector newDirection(dirx, diry, cth);
884 newDirection.rotateUz(oldDirection);
885
886 fParticleChange->ProposeMomentumDirection(newDirection);
887
888 if(latDisplasment && currentTau >= tausmall)
889 {
890 if(displacementFlag)
891 {
892 SampleDisplacementNew(cth, phi);
893 }
894 else
895 {
896 SampleDisplacement(sth, phi);
897 }
898 fDisplacement.rotateUz(oldDirection);
899 }
900 return fDisplacement;
901}
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
virtual double flat()=0
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
G4double GetDEDX(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
G4ThreeVector fDisplacement

◆ SetNewDisplacementFlag()

void G4UrbanAdjointMscModel::SetNewDisplacementFlag ( G4bool val)
inline

Definition at line 164 of file G4UrbanAdjointMscModel.hh.

165{
166 displacementFlag = val;
167}

◆ StartTracking()

void G4UrbanAdjointMscModel::StartTracking ( G4Track * track)
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 410 of file G4UrbanAdjointMscModel.cc.

411{
412 SetParticle(track->GetDynamicParticle()->GetDefinition());
413 firstStep = true;
414 insideskin = false;
415 fr = facrange;
416 tlimit = tgeom = rangeinit = rangecut = geombig;
417 smallstep = 1.e10;
418 stepmin = tlimitminfix;
419 tlimitmin = 10. * tlimitminfix;
420 rndmEngineMod = G4Random::getTheEngine();
421}
G4ParticleDefinition * GetDefinition() const

The documentation for this class was generated from the following files: