Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Log.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4Log
27//
28// Class description:
29//
30// The basic idea is to exploit Pade polynomials.
31// A lot of ideas were inspired by the cephes math library
32// (by Stephen L. Moshier [email protected]) as well as actual code.
33// The Cephes library can be found here: http://www.netlib.org/cephes/
34// Code and algorithms for G4Exp have been extracted and adapted for Geant4
35// from the original implementation in the VDT mathematical library
36// (https://svnweb.cern.ch/trac/vdt), version 0.3.7.
37
38// Original implementation created on: Jun 23, 2012
39// Author: Danilo Piparo, Thomas Hauth, Vincenzo Innocente
40//
41// --------------------------------------------------------------------
42/*
43 * VDT is free software: you can redistribute it and/or modify
44 * it under the terms of the GNU Lesser Public License as published by
45 * the Free Software Foundation, either version 3 of the License, or
46 * (at your option) any later version.
47 *
48 * This program is distributed in the hope that it will be useful,
49 * but WITHOUT ANY WARRANTY; without even the implied warranty of
50 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
51 * GNU Lesser Public License for more details.
52 *
53 * You should have received a copy of the GNU Lesser Public License
54 * along with this program. If not, see <http://www.gnu.org/licenses/>.
55 */
56// --------------------------------------------------------------------
57#ifndef G4Log_hh
58#define G4Log_hh 1
59
60#ifdef WIN32
61
62# define G4Log std::log
63
64#else
65
66# include "G4Types.hh"
67
68# include <cstdint>
69# include <limits>
70
71// local namespace for the constants/functions which are necessary only here
72//
73namespace G4LogConsts
74{
77
78 const G4double SQRTH = 0.70710678118654752440;
79 const G4float MAXNUMF = 3.4028234663852885981170418348451692544e38f;
80
81 //----------------------------------------------------------------------------
82 // Used to switch between different type of interpretations of the data
83 // (64 bits)
84 //
85 union ieee754
86 {
87 ieee754()= default;
88 ieee754(G4double thed) { d = thed; };
89 ieee754(uint64_t thell) { ll = thell; };
90 ieee754(G4float thef) { f[0] = thef; };
91 ieee754(uint32_t thei) { i[0] = thei; };
94 uint32_t i[2];
95 uint64_t ll;
96 uint16_t s[4];
97 };
98
100 {
101 const G4double PX1log = 1.01875663804580931796E-4;
102 const G4double PX2log = 4.97494994976747001425E-1;
103 const G4double PX3log = 4.70579119878881725854E0;
104 const G4double PX4log = 1.44989225341610930846E1;
105 const G4double PX5log = 1.79368678507819816313E1;
106 const G4double PX6log = 7.70838733755885391666E0;
107
108 G4double px = PX1log;
109 px *= x;
110 px += PX2log;
111 px *= x;
112 px += PX3log;
113 px *= x;
114 px += PX4log;
115 px *= x;
116 px += PX5log;
117 px *= x;
118 px += PX6log;
119 return px;
120 }
121
123 {
124 const G4double QX1log = 1.12873587189167450590E1;
125 const G4double QX2log = 4.52279145837532221105E1;
126 const G4double QX3log = 8.29875266912776603211E1;
127 const G4double QX4log = 7.11544750618563894466E1;
128 const G4double QX5log = 2.31251620126765340583E1;
129
130 G4double qx = x;
131 qx += QX1log;
132 qx *= x;
133 qx += QX2log;
134 qx *= x;
135 qx += QX3log;
136 qx *= x;
137 qx += QX4log;
138 qx *= x;
139 qx += QX5log;
140 return qx;
141 }
142
143 //----------------------------------------------------------------------------
144 // Converts a double to an unsigned long long
145 //
146 inline uint64_t dp2uint64(G4double x)
147 {
148 ieee754 tmp;
149 tmp.d = x;
150 return tmp.ll;
151 }
152
153 //----------------------------------------------------------------------------
154 // Converts an unsigned long long to a double
155 //
156 inline G4double uint642dp(uint64_t ll)
157 {
158 ieee754 tmp;
159 tmp.ll = ll;
160 return tmp.d;
161 }
162
163 //----------------------------------------------------------------------------
164 // Converts an int to a float
165 //
167 {
168 ieee754 tmp;
169 tmp.i[0] = x;
170 return tmp.f[0];
171 }
172
173 //----------------------------------------------------------------------------
174 // Converts a float to an int
175 //
176 inline uint32_t sp2uint32(G4float x)
177 {
178 ieee754 tmp;
179 tmp.f[0] = x;
180 return tmp.i[0];
181 }
182
183 //----------------------------------------------------------------------------
184 /// Like frexp but vectorising and the exponent is a double.
186 {
187 uint64_t n = dp2uint64(x);
188
189 // Shift to the right up to the beginning of the exponent.
190 // Then with a mask, cut off the sign bit
191 uint64_t le = (n >> 52);
192
193 // chop the head of the number: an int contains more than 11 bits (32)
194 int32_t e =
195 (int32_t)le; // This is important since sums on uint64_t do not vectorise
196 fe = e - 1023;
197
198 // This puts to 11 zeroes the exponent
199 n &= 0x800FFFFFFFFFFFFFULL;
200 // build a mask which is 0.5, i.e. an exponent equal to 1022
201 // which means *2, see the above +1.
202 const uint64_t p05 = 0x3FE0000000000000ULL; // dp2uint64(0.5);
203 n |= p05;
204
205 return uint642dp(n);
206 }
207
208 //----------------------------------------------------------------------------
209 /// Like frexp but vectorising and the exponent is a float.
211 {
212 uint32_t n = sp2uint32(x);
213 int32_t e = (n >> 23) - 127;
214 fe = e;
215
216 // fractional part
217 const uint32_t p05f = 0x3f000000; // //sp2uint32(0.5);
218 n &= 0x807fffff; // ~0x7f800000;
219 n |= p05f;
220
221 return uint322sp(n);
222 }
223} // namespace G4LogConsts
224
225// Log double precision --------------------------------------------------------
226
228{
229 const G4double original_x = x;
230
231 /* separate mantissa from exponent */
232 G4double fe;
234
235 // blending
236 x > G4LogConsts::SQRTH ? fe += 1. : x += x;
237 x -= 1.0;
238
239 /* rational form */
241
242 // for the final formula
243 const G4double x2 = x * x;
244 px *= x;
245 px *= x2;
246
247 const G4double qx = G4LogConsts::get_log_qx(x);
248
249 G4double res = px / qx;
250
251 res -= fe * 2.121944400546905827679e-4;
252 res -= 0.5 * x2;
253
254 res = x + res;
255 res += fe * 0.693359375;
256
257 if(original_x > G4LogConsts::LOG_UPPER_LIMIT)
258 res = std::numeric_limits<G4double>::infinity();
259 if(original_x < G4LogConsts::LOG_LOWER_LIMIT) // THIS IS NAN!
260 res = -std::numeric_limits<G4double>::quiet_NaN();
261
262 return res;
263}
264
265// Log single precision --------------------------------------------------------
266
267namespace G4LogConsts
268{
271
272 const G4float PX1logf = 7.0376836292E-2f;
273 const G4float PX2logf = -1.1514610310E-1f;
274 const G4float PX3logf = 1.1676998740E-1f;
275 const G4float PX4logf = -1.2420140846E-1f;
276 const G4float PX5logf = 1.4249322787E-1f;
277 const G4float PX6logf = -1.6668057665E-1f;
278 const G4float PX7logf = 2.0000714765E-1f;
279 const G4float PX8logf = -2.4999993993E-1f;
280 const G4float PX9logf = 3.3333331174E-1f;
281
283 {
284 G4float y = x * PX1logf;
285 y += PX2logf;
286 y *= x;
287 y += PX3logf;
288 y *= x;
289 y += PX4logf;
290 y *= x;
291 y += PX5logf;
292 y *= x;
293 y += PX6logf;
294 y *= x;
295 y += PX7logf;
296 y *= x;
297 y += PX8logf;
298 y *= x;
299 y += PX9logf;
300 return y;
301 }
302
303 const G4float SQRTHF = 0.707106781186547524f;
304} // namespace G4LogConsts
305
306// Log single precision --------------------------------------------------------
307
309{
310 const G4float original_x = x;
311
312 G4float fe;
314
315 x > G4LogConsts::SQRTHF ? fe += 1.f : x += x;
316 x -= 1.0f;
317
318 const G4float x2 = x * x;
319
321 res *= x2 * x;
322
323 res += -2.12194440e-4f * fe;
324 res += -0.5f * x2;
325
326 res = x + res;
327
328 res += 0.693359375f * fe;
329
330 if(original_x > G4LogConsts::LOGF_UPPER_LIMIT)
331 res = std::numeric_limits<G4float>::infinity();
332 if(original_x < G4LogConsts::LOGF_LOWER_LIMIT)
333 res = -std::numeric_limits<G4float>::quiet_NaN();
334
335 return res;
336}
337
338//------------------------------------------------------------------------------
339
340void logv(const uint32_t size, G4double const* __restrict__ iarray,
341 G4double* __restrict__ oarray);
342void G4Logv(const uint32_t size, G4double const* __restrict__ iarray,
343 G4double* __restrict__ oarray);
344void logfv(const uint32_t size, G4float const* __restrict__ iarray,
345 G4float* __restrict__ oarray);
346void G4Logfv(const uint32_t size, G4float const* __restrict__ iarray,
347 G4float* __restrict__ oarray);
348
349#endif /* WIN32 */
350
351#endif /* LOG_H_ */
G4fissionEvent * fe
G4float G4Logf(G4float x)
Definition G4Log.hh:308
void logfv(const uint32_t size, G4float const *__restrict__ iarray, G4float *__restrict__ oarray)
void G4Logfv(const uint32_t size, G4float const *__restrict__ iarray, G4float *__restrict__ oarray)
void logv(const uint32_t size, G4double const *__restrict__ iarray, G4double *__restrict__ oarray)
void G4Logv(const uint32_t size, G4double const *__restrict__ iarray, G4double *__restrict__ oarray)
G4double G4Log(G4double x)
Definition G4Log.hh:227
float G4float
Definition G4Types.hh:84
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
G4float getMantExponentf(const G4float x, G4float &fe)
Like frexp but vectorising and the exponent is a float.
Definition G4Log.hh:210
const G4float PX1logf
Definition G4Log.hh:272
G4double get_log_px(const G4double x)
Definition G4Log.hh:99
const G4double LOG_LOWER_LIMIT
Definition G4Log.hh:76
uint64_t dp2uint64(G4double x)
Definition G4Log.hh:146
const G4float LOGF_UPPER_LIMIT
Definition G4Log.hh:269
const G4float LOGF_LOWER_LIMIT
Definition G4Log.hh:270
const G4float PX8logf
Definition G4Log.hh:279
const G4float PX6logf
Definition G4Log.hh:277
G4float get_log_poly(const G4float x)
Definition G4Log.hh:282
const G4float PX3logf
Definition G4Log.hh:274
const G4float MAXNUMF
Definition G4Log.hh:79
const G4double LOG_UPPER_LIMIT
Definition G4Log.hh:75
const G4float PX9logf
Definition G4Log.hh:280
G4double getMantExponent(const G4double x, G4double &fe)
Like frexp but vectorising and the exponent is a double.
Definition G4Log.hh:185
const G4float PX2logf
Definition G4Log.hh:273
const G4float PX5logf
Definition G4Log.hh:276
G4double get_log_qx(const G4double x)
Definition G4Log.hh:122
const G4float PX7logf
Definition G4Log.hh:278
const G4float SQRTHF
Definition G4Log.hh:303
G4float uint322sp(G4int x)
Definition G4Log.hh:166
G4double uint642dp(uint64_t ll)
Definition G4Log.hh:156
const G4float PX4logf
Definition G4Log.hh:275
uint32_t sp2uint32(G4float x)
Definition G4Log.hh:176
const G4double SQRTH
Definition G4Log.hh:78
ieee754(uint32_t thei)
Definition G4Log.hh:91
ieee754(G4float thef)
Definition G4Log.hh:90
ieee754(uint64_t thell)
Definition G4Log.hh:89
ieee754(G4double thed)
Definition G4Log.hh:88
uint32_t i[2]
Definition G4Log.hh:94
G4float f[2]
Definition G4Log.hh:93