Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DNABornIonisationModel2.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
30#include "G4SystemOfUnits.hh"
32#include "G4LossTableManager.hh"
35#include "G4DNABornAngle.hh"
36#include "G4DeltaAngle.hh"
37#include "G4Exp.hh"
38
39//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
40
41using namespace std;
42
43//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
44
46 const G4String& nam) :
47G4VEmModel(nam), isInitialised(false)
48{
49 verboseLevel = 0;
50 // Verbosity scale:
51 // 0 = nothing
52 // 1 = warning for energy non-conservation
53 // 2 = details of energy budget
54 // 3 = calculation of cross sections, file openings, sampling of atoms
55 // 4 = entering in methods
56
57 if (verboseLevel > 0)
58 {
59 G4cout << "Born ionisation model is constructed " << G4endl;
60 }
61
62 // Mark this model as "applicable" for atomic deexcitation
63
65 fAtomDeexcitation = 0;
67 fpMolWaterDensity = 0;
68 fTableData = 0;
69 fLowEnergyLimit = 0;
70 fHighEnergyLimit = 0;
71 fParticleDef = 0;
72
73 // Define default angular generator
74
76
77 // Selection of computation method
78
79 fasterCode = false;
80
81 // Selection of stationary mode
82
83 statCode = false;
84
85 // Selection of SP scaling
86
87 spScaling = true;
88}
89
90//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
91
93{
94 // Cross section
95
96 if (fTableData)
97 delete fTableData;
98
99 // Final state
100
101 fVecm.clear();
102}
103
104//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
105
107 const G4DataVector& /*cuts*/)
108{
109
110 if (verboseLevel > 3)
111 {
112 G4cout << "Calling G4DNABornIonisationModel2::Initialise()" << G4endl;
113 }
114
115 if(fParticleDef != 0 && particle != fParticleDef)
116 {
117 G4ExceptionDescription description;
118 description << "You are trying to initialized G4DNABornIonisationModel2 "
119 "for particle "
120 << particle->GetParticleName()
121 << G4endl;
122 description << "G4DNABornIonisationModel2 was already initialised "
123 "for particle:" << fParticleDef->GetParticleName() << G4endl;
124 G4Exception("G4DNABornIonisationModel2::Initialise","bornIonInit",
125 FatalException,description);
126 }
127
128 fParticleDef = particle;
129
130 // Energy limits
131 const char* path = G4FindDataDir("G4LEDATA");
132
133 // ***
134
135 G4String particleName = particle->GetParticleName();
136 std::ostringstream fullFileName;
137 fullFileName << path;
138
139 if(particleName == "e-")
140 {
141 fTableFile = "dna/sigma_ionisation_e_born";
142 fLowEnergyLimit = 11.*eV;
143 fHighEnergyLimit = 1.*MeV;
144
145 if (fasterCode)
146 {
147 fullFileName << "/dna/sigmadiff_cumulated_ionisation_e_born_hp.dat";
148 }
149 else
150 {
151 fullFileName << "/dna/sigmadiff_ionisation_e_born.dat";
152 }
153 }
154 else if(particleName == "proton")
155 {
156 fTableFile = "dna/sigma_ionisation_p_born";
157 fLowEnergyLimit = 500. * keV;
158 fHighEnergyLimit = 100. * MeV;
159
160 if (fasterCode)
161 {
162 fullFileName << "/dna/sigmadiff_cumulated_ionisation_p_born_hp.dat";
163 }
164 else
165 {
166 fullFileName << "/dna/sigmadiff_ionisation_p_born.dat";
167 }
168 }
169
170 // Cross section
171
172 G4double scaleFactor = (1.e-22 / 3.343) * m*m;
173 fTableData = new G4DNACrossSectionDataSet(new G4LogLogInterpolation, eV,scaleFactor );
174 fTableData->LoadData(fTableFile);
175
176 // Final state
177
178 std::ifstream diffCrossSection(fullFileName.str().c_str());
179
180 if (!diffCrossSection)
181 {
182 G4ExceptionDescription description;
183 description << "Missing data file:" << G4endl << fullFileName.str() << G4endl;
184 G4Exception("G4DNABornIonisationModel2::Initialise","em0003",
185 FatalException,description);
186 }
187
188 // Clear the arrays for re-initialization case (MT mode)
189 // March 25th, 2014 - Vaclav Stepan, Sebastien Incerti
190
191 fTdummyVec.clear();
192 fVecm.clear();
193
194 for (int j=0; j<5; j++)
195 {
196 fProbaShellMap[j].clear();
197 fDiffCrossSectionData[j].clear();
198 fNrjTransfData[j].clear();
199 }
200
201 //
202
203 fTdummyVec.push_back(0.);
204 while(!diffCrossSection.eof())
205 {
206 G4double tDummy;
207 G4double eDummy;
208 diffCrossSection>>tDummy>>eDummy;
209 if (tDummy != fTdummyVec.back()) fTdummyVec.push_back(tDummy);
210
211 G4double tmp;
212 for (int j=0; j<5; j++)
213 {
214 diffCrossSection>> tmp;
215
216 fDiffCrossSectionData[j][tDummy][eDummy] = tmp;
217
218 if (fasterCode)
219 {
220 fNrjTransfData[j][tDummy][fDiffCrossSectionData[j][tDummy][eDummy]]=eDummy;
221 fProbaShellMap[j][tDummy].push_back(fDiffCrossSectionData[j][tDummy][eDummy]);
222 }
223
224 // SI - only if eof is not reached
225 if (!diffCrossSection.eof() && !fasterCode) fDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
226
227 if (!fasterCode) fVecm[tDummy].push_back(eDummy);
228
229 }
230 }
231
232 //
233 SetLowEnergyLimit(fLowEnergyLimit);
234 SetHighEnergyLimit(fHighEnergyLimit);
235
236 if( verboseLevel>0 )
237 {
238 G4cout << "Born ionisation model is initialized " << G4endl
239 << "Energy range: "
240 << LowEnergyLimit() / eV << " eV - "
241 << HighEnergyLimit() / keV << " keV for "
242 << particle->GetParticleName()
243 << G4endl;
244 }
245
246 // Initialize water density pointer
247
248 fpMolWaterDensity = G4DNAMolecularMaterial::Instance()->
249 GetNumMolPerVolTableFor(G4Material::GetMaterial("G4_WATER"));
250
251 // AD
252
253 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
254
255 if (isInitialised)
256 { return;}
258 isInitialised = true;
259}
260
261//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
262
264 const G4ParticleDefinition* particleDefinition,
265 G4double ekin,
266 G4double,
267 G4double)
268{
269 if (verboseLevel > 3)
270 {
271 G4cout << "Calling CrossSectionPerVolume() of G4DNABornIonisationModel2"
272 << G4endl;
273 }
274
275 if (particleDefinition != fParticleDef) return 0;
276
277 // Calculate total cross section for model
278
279 G4double sigma=0;
280
281 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()];
282
283 if (ekin >= fLowEnergyLimit && ekin <= fHighEnergyLimit)
284 {
285 sigma = fTableData->FindValue(ekin);
286
287 // ICRU49 electronic SP scaling - ZF, SI
288
289 if (particleDefinition == G4Proton::ProtonDefinition() && ekin < 70*MeV && spScaling)
290 {
291 G4double A = 1.39241700556072800000E-009 ;
292 G4double B = -8.52610412942622630000E-002 ;
293 sigma = sigma * G4Exp(A*(ekin/eV)+B);
294 }
295 //
296 }
297
298 if (verboseLevel > 2)
299 {
300 G4cout << "__________________________________" << G4endl;
301 G4cout << "G4DNABornIonisationModel2 - XS INFO START" << G4endl;
302 G4cout << "Kinetic energy(eV)=" << ekin/eV << " particle : " << particleDefinition->GetParticleName() << G4endl;
303 G4cout << "Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
304 G4cout << "Cross section per water molecule (cm^-1)=" << sigma*waterDensity/(1./cm) << G4endl;
305 G4cout << "G4DNABornIonisationModel2 - XS INFO END" << G4endl;
306 }
307
308 return sigma*waterDensity;
309}
310
311//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
312
313void G4DNABornIonisationModel2::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
314 const G4MaterialCutsCouple* couple,
315 const G4DynamicParticle* particle,
316 G4double,
317 G4double)
318{
319
320 if (verboseLevel > 3)
321 {
322 G4cout << "Calling SampleSecondaries() of G4DNABornIonisationModel2"
323 << G4endl;
324 }
325
326 G4double k = particle->GetKineticEnergy();
327
328 if (k >= fLowEnergyLimit && k <= fHighEnergyLimit)
329 {
330 G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
331 G4double particleMass = particle->GetDefinition()->GetPDGMass();
332 G4double totalEnergy = k + particleMass;
333 G4double pSquare = k * (totalEnergy + particleMass);
334 G4double totalMomentum = std::sqrt(pSquare);
335
336 G4int ionizationShell = 0;
337
338 if (!fasterCode) ionizationShell = RandomSelect(k);
339
340 // SI: The following protection is necessary to avoid infinite loops :
341 // sigmadiff_ionisation_e_born.dat has non zero partial xs at 18 eV for shell 3 (ionizationShell ==2)
342 // sigmadiff_cumulated_ionisation_e_born.dat has zero cumulated partial xs at 18 eV for shell 3 (ionizationShell ==2)
343 // this is due to the fact that the max allowed transfered energy is (18+10.79)/2=17.025 eV and only transfered energies
344 // strictly above this value have non zero partial xs in sigmadiff_ionisation_e_born.dat (starting at trans = 17.12 eV)
345
346 if (fasterCode)
347 do
348 {
349 ionizationShell = RandomSelect(k);
350 } while (k<19*eV && ionizationShell==2 && particle->GetDefinition()==G4Electron::ElectronDefinition());
351
352 G4double secondaryKinetic=-1000*eV;
353
354 if (fasterCode == false)
355 {
356 secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell);
357 }
358 else
359 {
360 secondaryKinetic = RandomizeEjectedElectronEnergyFromCumulatedDcs(particle->GetDefinition(),k,ionizationShell);
361 }
362
363 G4int Z = 8;
364
365 G4ThreeVector deltaDirection =
366 GetAngularDistribution()->SampleDirectionForShell(particle, secondaryKinetic,
367 Z, ionizationShell,
368 couple->GetMaterial());
369
370 if (secondaryKinetic>0)
371 {
372 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),deltaDirection,secondaryKinetic);
373 fvect->push_back(dp);
374 }
375
377 {
378 G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
379
380 G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
381 G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
382 G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
383 G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz);
384 finalPx /= finalMomentum;
385 finalPy /= finalMomentum;
386 finalPz /= finalMomentum;
387
388 G4ThreeVector direction;
389 direction.set(finalPx,finalPy,finalPz);
390
392 }
393
395
396 // AM: sample deexcitation
397 // here we assume that H_{2}O electronic levels are the same as Oxygen.
398 // this can be considered true with a rough 10% error in energy on K-shell,
399
400 std::size_t secNumberInit = 0;
401 std::size_t secNumberFinal = 0;
402
403 G4double bindingEnergy = 0;
404 bindingEnergy = waterStructure.IonisationEnergy(ionizationShell);
405
406 // SI: additional protection if tcs interpolation method is modified
407 if (k<bindingEnergy) return;
408 //
409
410 G4double scatteredEnergy = k-bindingEnergy-secondaryKinetic;
411
412 // SI: only atomic deexcitation from K shell is considered
413 if(fAtomDeexcitation && ionizationShell == 4)
414 {
415 const G4AtomicShell* shell =
416 fAtomDeexcitation->GetAtomicShell(Z, G4AtomicShellEnumerator(0));
417 secNumberInit = fvect->size();
418 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, 0, 0);
419 secNumberFinal = fvect->size();
420
421 if(secNumberFinal > secNumberInit)
422 {
423 for (std::size_t i=secNumberInit; i<secNumberFinal; ++i)
424 {
425 //Check if there is enough residual energy
426 if (bindingEnergy >= ((*fvect)[i])->GetKineticEnergy())
427 {
428 //Ok, this is a valid secondary: keep it
429 bindingEnergy -= ((*fvect)[i])->GetKineticEnergy();
430 }
431 else
432 {
433 //Invalid secondary: not enough energy to create it!
434 //Keep its energy in the local deposit
435 delete (*fvect)[i];
436 (*fvect)[i]=0;
437 }
438 }
439 }
440
441 }
442
443 //This should never happen
444 if(bindingEnergy < 0.0)
445 G4Exception("G4DNAEmfietzoglouIonisatioModel1::SampleSecondaries()",
446 "em2050",FatalException,"Negative local energy deposit");
447
448 //bindingEnergy has been decreased
449 //by the amount of energy taken away by deexc. products
450 if (!statCode)
451 {
454 }
455 else
456 {
459 }
460
461 // TEST //////////////////////////
462 // if (secondaryKinetic<0) abort();
463 // if (scatteredEnergy<0) abort();
464 // if (k-scatteredEnergy-secondaryKinetic-deexSecEnergy<0) abort();
465 // if (k-scatteredEnergy<0) abort();
466 /////////////////////////////////
467
468 const G4Track * theIncomingTrack = fParticleChangeForGamma->GetCurrentTrack();
470 ionizationShell,
471 theIncomingTrack);
472 }
473}
474
475//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
476
477G4double G4DNABornIonisationModel2::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition,
478 G4double k,
479 G4int shell)
480{
481 // G4cout << "*** SLOW computation for " << " " << particleDefinition->GetParticleName() << G4endl;
482
483 if (particleDefinition == G4Electron::ElectronDefinition())
484 {
485 G4double maximumEnergyTransfer = 0.;
486 if ((k + waterStructure.IonisationEnergy(shell)) / 2. > k)
487 maximumEnergyTransfer = k;
488 else
489 maximumEnergyTransfer = (k + waterStructure.IonisationEnergy(shell)) / 2.;
490
491 // SI : original method
492 /*
493 G4double crossSectionMaximum = 0.;
494 for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV)
495 {
496 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
497 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
498 }
499 */
500
501 // SI : alternative method
502 G4double crossSectionMaximum = 0.;
503
504 G4double minEnergy = waterStructure.IonisationEnergy(shell);
505 G4double maxEnergy = maximumEnergyTransfer;
506 G4int nEnergySteps = 50;
507
508 G4double value(minEnergy);
509 G4double stpEnergy(std::pow(maxEnergy / value,
510 1. / static_cast<G4double>(nEnergySteps - 1)));
511 G4int step(nEnergySteps);
512 while (step > 0)
513 {
514 step--;
515 G4double differentialCrossSection =
516 DifferentialCrossSection(particleDefinition,
517 k / eV,
518 value / eV,
519 shell);
520 if (differentialCrossSection >= crossSectionMaximum)
521 crossSectionMaximum = differentialCrossSection;
522 value *= stpEnergy;
523 }
524 //
525
526 G4double secondaryElectronKineticEnergy = 0.;
527 do
528 {
529 secondaryElectronKineticEnergy = G4UniformRand()* (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell));
530 } while(G4UniformRand()*crossSectionMaximum >
531 DifferentialCrossSection(particleDefinition, k/eV,
532 (secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
533
534 return secondaryElectronKineticEnergy;
535
536 }
537
538 else if (particleDefinition == G4Proton::ProtonDefinition())
539 {
540 G4double maximumKineticEnergyTransfer = 4.
541 * (electron_mass_c2 / proton_mass_c2) * k;
542
543 G4double crossSectionMaximum = 0.;
544 for (G4double value = waterStructure.IonisationEnergy(shell);
545 value <= 4. * waterStructure.IonisationEnergy(shell); value += 0.1 * eV)
546 {
547 G4double differentialCrossSection =
548 DifferentialCrossSection(particleDefinition,
549 k / eV,
550 value / eV,
551 shell);
552 if (differentialCrossSection >= crossSectionMaximum)
553 crossSectionMaximum = differentialCrossSection;
554 }
555
556 G4double secondaryElectronKineticEnergy = 0.;
557 do
558 {
559 secondaryElectronKineticEnergy = G4UniformRand()* maximumKineticEnergyTransfer;
560 } while(G4UniformRand()*crossSectionMaximum >=
561 DifferentialCrossSection(particleDefinition, k/eV,
562 (secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
563
564 return secondaryElectronKineticEnergy;
565 }
566
567 return 0;
568}
569
570//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
571
572// The following section is not used anymore but is kept for memory
573// GetAngularDistribution()->SampleDirectionForShell is used instead
574
575/*
576 void G4DNABornIonisationModel2::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
577 G4double k,
578 G4double secKinetic,
579 G4double & cosTheta,
580 G4double & phi )
581 {
582 if (particleDefinition == G4Electron::ElectronDefinition())
583 {
584 phi = twopi * G4UniformRand();
585 if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.;
586 else if (secKinetic <= 200.*eV)
587 {
588 if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.;
589 else cosTheta = G4UniformRand()*(std::sqrt(2.)/2);
590 }
591 else
592 {
593 G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2));
594 cosTheta = std::sqrt(1.-sin2O);
595 }
596 }
597
598 else if (particleDefinition == G4Proton::ProtonDefinition())
599 {
600 G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
601 phi = twopi * G4UniformRand();
602
603 // cosTheta = std::sqrt(secKinetic / maxSecKinetic);
604
605 // Restriction below 100 eV from Emfietzoglou (2000)
606
607 if (secKinetic>100*eV) cosTheta = std::sqrt(secKinetic / maxSecKinetic);
608 else cosTheta = (2.*G4UniformRand())-1.;
609
610 }
611 }
612 */
613
614//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
616 G4double k,
617 G4double energyTransfer,
618 G4int ionizationLevelIndex)
619{
620 G4double sigma = 0.;
621
622 if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex)/eV)
623 {
624 G4double valueT1 = 0;
625 G4double valueT2 = 0;
626 G4double valueE21 = 0;
627 G4double valueE22 = 0;
628 G4double valueE12 = 0;
629 G4double valueE11 = 0;
630
631 G4double xs11 = 0;
632 G4double xs12 = 0;
633 G4double xs21 = 0;
634 G4double xs22 = 0;
635
636 // Protection against out of boundary access - proton case : 100 MeV
637 if (k==fTdummyVec.back()) k=k*(1.-1e-12);
638 //
639
640 // k should be in eV and energy transfer eV also
641
642 std::vector<G4double>::iterator t2 = std::upper_bound(fTdummyVec.begin(),
643 fTdummyVec.end(),
644 k);
645
646 std::vector<G4double>::iterator t1 = t2 - 1;
647
648 // SI : the following condition avoids situations where energyTransfer >last vector element
649
650 if (energyTransfer <= fVecm[(*t1)].back()
651 && energyTransfer <= fVecm[(*t2)].back())
652 {
653 std::vector<G4double>::iterator e12 = std::upper_bound(fVecm[(*t1)].begin(),
654 fVecm[(*t1)].end(),
655 energyTransfer);
656 std::vector<G4double>::iterator e11 = e12 - 1;
657
658 std::vector<G4double>::iterator e22 = std::upper_bound(fVecm[(*t2)].begin(),
659 fVecm[(*t2)].end(),
660 energyTransfer);
661 std::vector<G4double>::iterator e21 = e22 - 1;
662
663 valueT1 = *t1;
664 valueT2 = *t2;
665 valueE21 = *e21;
666 valueE22 = *e22;
667 valueE12 = *e12;
668 valueE11 = *e11;
669
670 xs11 = fDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
671 xs12 = fDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
672 xs21 = fDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
673 xs22 = fDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
674
675 }
676
677 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
678 if (xsProduct != 0.)
679 {
680 sigma = QuadInterpolator(valueE11,
681 valueE12,
682 valueE21,
683 valueE22,
684 xs11,
685 xs12,
686 xs21,
687 xs22,
688 valueT1,
689 valueT2,
690 k,
691 energyTransfer);
692 }
693 }
694
695 return sigma;
696}
697
698//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
699
700G4double G4DNABornIonisationModel2::Interpolate(G4double e1,
701 G4double e2,
702 G4double e,
703 G4double xs1,
704 G4double xs2)
705{
706 G4double value = 0.;
707
708 // Log-log interpolation by default
709
710 if (e1 != 0 && e2 != 0 && (std::log10(e2) - std::log10(e1)) != 0
711 && !fasterCode)
712 {
713 G4double a = (std::log10(xs2) - std::log10(xs1))
714 / (std::log10(e2) - std::log10(e1));
715 G4double b = std::log10(xs2) - a * std::log10(e2);
716 G4double sigma = a * std::log10(e) + b;
717 value = (std::pow(10., sigma));
718 }
719
720 // Switch to lin-lin interpolation
721 /*
722 if ((e2-e1)!=0)
723 {
724 G4double d1 = xs1;
725 G4double d2 = xs2;
726 value = (d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
727 }
728 */
729
730 // Switch to log-lin interpolation for faster code
731 if ((e2 - e1) != 0 && xs1 != 0 && xs2 != 0 && fasterCode)
732 {
733 G4double d1 = std::log10(xs1);
734 G4double d2 = std::log10(xs2);
735 value = std::pow(10., (d1 + (d2 - d1) * (e - e1) / (e2 - e1)));
736 }
737
738 // Switch to lin-lin interpolation for faster code
739 // in case one of xs1 or xs2 (=cum proba) value is zero
740
741 if ((e2 - e1) != 0 && (xs1 == 0 || xs2 == 0) && fasterCode)
742 {
743 G4double d1 = xs1;
744 G4double d2 = xs2;
745 value = (d1 + (d2 - d1) * (e - e1) / (e2 - e1));
746 }
747
748 /*
749 G4cout
750 << e1 << " "
751 << e2 << " "
752 << e << " "
753 << xs1 << " "
754 << xs2 << " "
755 << value
756 << G4endl;
757 */
758
759 return value;
760}
761
762//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
763
764G4double G4DNABornIonisationModel2::QuadInterpolator(G4double e11,
765 G4double e12,
766 G4double e21,
767 G4double e22,
768 G4double xs11,
769 G4double xs12,
770 G4double xs21,
771 G4double xs22,
772 G4double t1,
773 G4double t2,
774 G4double t,
775 G4double e)
776{
777 G4double interpolatedvalue1 = Interpolate(e11, e12, e, xs11, xs12);
778 G4double interpolatedvalue2 = Interpolate(e21, e22, e, xs21, xs22);
779 G4double value = Interpolate(t1,
780 t2,
781 t,
782 interpolatedvalue1,
783 interpolatedvalue2);
784
785 return value;
786}
787
788//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
789
791 G4int level,
792 const G4ParticleDefinition* /*particle*/,
793 G4double kineticEnergy)
794{
795 return fTableData->GetComponent(level)->FindValue(kineticEnergy);
796}
797
798//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
799
800G4int G4DNABornIonisationModel2::RandomSelect(G4double k)
801{
802 G4int level = 0;
803
804 G4double* valuesBuffer = new G4double[fTableData->NumberOfComponents()];
805 const G4int n = (G4int)fTableData->NumberOfComponents();
806 G4int i(n);
807 G4double value = 0.;
808
809 while (i > 0)
810 {
811 i--;
812 valuesBuffer[i] = fTableData->GetComponent(i)->FindValue(k);
813 value += valuesBuffer[i];
814 }
815
816 value *= G4UniformRand();
817
818 i = n;
819
820 while (i > 0)
821 {
822 i--;
823
824 if (valuesBuffer[i] > value)
825 {
826 delete[] valuesBuffer;
827 return i;
828 }
829 value -= valuesBuffer[i];
830 }
831
832 if (valuesBuffer)
833 delete[] valuesBuffer;
834
835 return level;
836}
837
838//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
839
840G4double G4DNABornIonisationModel2::RandomizeEjectedElectronEnergyFromCumulatedDcs(G4ParticleDefinition* particleDefinition,
841 G4double k,
842 G4int shell)
843{
844 // G4cout << "*** FAST computation for " << " " << particleDefinition->GetParticleName() << G4endl;
845
846 G4double secondaryElectronKineticEnergy = 0.;
847
848 G4double random = G4UniformRand();
849
850 secondaryElectronKineticEnergy = TransferedEnergy(particleDefinition,
851 k / eV,
852 shell,
853 random) * eV
854 - waterStructure.IonisationEnergy(shell);
855
856 // G4cout << TransferedEnergy(particleDefinition, k/eV, shell, random) << G4endl;
857 if (secondaryElectronKineticEnergy < 0.)
858 return 0.;
859 //
860
861 return secondaryElectronKineticEnergy;
862}
863
864//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
865
867 G4double k,
868 G4int ionizationLevelIndex,
869 G4double random)
870{
871
872 G4double nrj = 0.;
873
874 G4double valueK1 = 0;
875 G4double valueK2 = 0;
876 G4double valuePROB21 = 0;
877 G4double valuePROB22 = 0;
878 G4double valuePROB12 = 0;
879 G4double valuePROB11 = 0;
880
881 G4double nrjTransf11 = 0;
882 G4double nrjTransf12 = 0;
883 G4double nrjTransf21 = 0;
884 G4double nrjTransf22 = 0;
885
886 // Protection against out of boundary access - proton case : 100 MeV
887 if (k==fTdummyVec.back()) k=k*(1.-1e-12);
888 //
889
890 // k should be in eV
891 std::vector<G4double>::iterator k2 = std::upper_bound(fTdummyVec.begin(),
892 fTdummyVec.end(),
893 k);
894 std::vector<G4double>::iterator k1 = k2 - 1;
895
896 /*
897 G4cout << "----> k=" << k
898 << " " << *k1
899 << " " << *k2
900 << " " << random
901 << " " << ionizationLevelIndex
902 << " " << eProbaShellMap[ionizationLevelIndex][(*k1)].back()
903 << " " << eProbaShellMap[ionizationLevelIndex][(*k2)].back()
904 << G4endl;
905 */
906
907 // SI : the following condition avoids situations where random >last vector element
908 if (random <= fProbaShellMap[ionizationLevelIndex][(*k1)].back()
909 && random <= fProbaShellMap[ionizationLevelIndex][(*k2)].back())
910 {
911 std::vector<G4double>::iterator prob12 =
912 std::upper_bound(fProbaShellMap[ionizationLevelIndex][(*k1)].begin(),
913 fProbaShellMap[ionizationLevelIndex][(*k1)].end(),
914 random);
915
916 std::vector<G4double>::iterator prob11 = prob12 - 1;
917
918 std::vector<G4double>::iterator prob22 =
919 std::upper_bound(fProbaShellMap[ionizationLevelIndex][(*k2)].begin(),
920 fProbaShellMap[ionizationLevelIndex][(*k2)].end(),
921 random);
922
923 std::vector<G4double>::iterator prob21 = prob22 - 1;
924
925 valueK1 = *k1;
926 valueK2 = *k2;
927 valuePROB21 = *prob21;
928 valuePROB22 = *prob22;
929 valuePROB12 = *prob12;
930 valuePROB11 = *prob11;
931
932 /*
933 G4cout << " " << random << " " << valuePROB11 << " "
934 << valuePROB12 << " " << valuePROB21 << " " << valuePROB22 << G4endl;
935 */
936
937 nrjTransf11 = fNrjTransfData[ionizationLevelIndex][valueK1][valuePROB11];
938 nrjTransf12 = fNrjTransfData[ionizationLevelIndex][valueK1][valuePROB12];
939 nrjTransf21 = fNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21];
940 nrjTransf22 = fNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22];
941
942 /*
943 G4cout << " " << ionizationLevelIndex << " "
944 << random << " " <<valueK1 << " " << valueK2 << G4endl;
945
946 G4cout << " " << random << " " << nrjTransf11 << " "
947 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl;
948 */
949
950 }
951 // Avoids cases where cum xs is zero for k1 and is not for k2 (with always k1<k2)
952 if (random > fProbaShellMap[ionizationLevelIndex][(*k1)].back())
953 {
954 std::vector<G4double>::iterator prob22 =
955 std::upper_bound(fProbaShellMap[ionizationLevelIndex][(*k2)].begin(),
956 fProbaShellMap[ionizationLevelIndex][(*k2)].end(),
957 random);
958
959 std::vector<G4double>::iterator prob21 = prob22 - 1;
960
961 valueK1 = *k1;
962 valueK2 = *k2;
963 valuePROB21 = *prob21;
964 valuePROB22 = *prob22;
965
966 // G4cout << " " << random << " " << valuePROB21 << " " << valuePROB22 << G4endl;
967
968 nrjTransf21 = fNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21];
969 nrjTransf22 = fNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22];
970
971 G4double interpolatedvalue2 = Interpolate(valuePROB21,
972 valuePROB22,
973 random,
974 nrjTransf21,
975 nrjTransf22);
976
977 // zeros are explicitly set
978
979 G4double value = Interpolate(valueK1, valueK2, k, 0., interpolatedvalue2);
980
981 /*
982 G4cout << " " << ionizationLevelIndex << " "
983 << random << " " <<valueK1 << " " << valueK2 << G4endl;
984
985 G4cout << " " << random << " " << nrjTransf11 << " "
986 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl;
987
988 G4cout << "ici" << " " << value << G4endl;
989 */
990
991 return value;
992 }
993
994 // End electron and proton cases
995
996 G4double nrjTransfProduct = nrjTransf11 * nrjTransf12 * nrjTransf21
997 * nrjTransf22;
998 //G4cout << "nrjTransfProduct=" << nrjTransfProduct << G4endl;
999
1000 if (nrjTransfProduct != 0.)
1001 {
1002 nrj = QuadInterpolator(valuePROB11,
1003 valuePROB12,
1004 valuePROB21,
1005 valuePROB22,
1006 nrjTransf11,
1007 nrjTransf12,
1008 nrjTransf21,
1009 nrjTransf22,
1010 valueK1,
1011 valueK2,
1012 k,
1013 random);
1014 }
1015 // G4cout << nrj << endl;
1016
1017 return nrj;
1018}
G4AtomicShellEnumerator
@ eIonizedMolecule
G4double B(G4double temperature)
const char * G4FindDataDir(const char *)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
G4ParticleChangeForGamma * fParticleChangeForGamma
virtual G4double GetPartialCrossSection(const G4Material *, G4int, const G4ParticleDefinition *, G4double)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4double DifferentialCrossSection(G4ParticleDefinition *aParticleDefinition, G4double k, G4double energyTransfer, G4int shell)
G4DNABornIonisationModel2(const G4ParticleDefinition *p=0, const G4String &nam="DNABornIonisationModel")
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &= *(new G4DataVector()))
G4double TransferedEnergy(G4ParticleDefinition *aParticleDefinition, G4double incomingParticleEnergy, G4int shell, G4double random)
static G4DNAChemistryManager * Instance()
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
virtual G4double FindValue(G4double e, G4int componentId=0) const
virtual size_t NumberOfComponents(void) const
virtual const G4VEMDataSet * GetComponent(G4int componentId) const
virtual G4bool LoadData(const G4String &argFileName)
static G4DNAMolecularMaterial * Instance()
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
static G4Electron * Electron()
Definition: G4Electron.cc:93
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
const G4Material * GetMaterial() const
size_t GetIndex() const
Definition: G4Material.hh:255
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
Definition: G4Material.cc:691
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
const G4String & GetParticleName() const
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:87
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
virtual G4ThreeVector & SampleDirectionForShell(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, G4int shellID, const G4Material *)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:746
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:600
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:753
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:802
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:607
const G4Track * GetCurrentTrack() const
void ProposeLocalEnergyDeposit(G4double anEnergyPart)