Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Material.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//---------------------------------------------------------------------------
27//
28// ClassName: G4Material
29//
30// Description: Contains material properties
31//
32// Class description:
33//
34// Is used to define the material composition of Geant4 volumes.
35// A G4Material is always made of G4Elements. It should has the name,
36// the list of G4Elements, material density, material state, temperature,
37// pressure. Other parameters are optional and may be set by the user code
38// or computed at initialisation.
39//
40// There is several ways to construct G4Material:
41// - from single element;
42// - from a list of components (elements or other materials);
43// - from internal Geant4 database of materials
44//
45// A collection of constituent Elements/Materials should be defined
46// with specified weights by fractional mass or atom counts (only for Elements).
47//
48// Quantities, with physical meaning or not, which are constant in a given
49// material are computed and stored here as Derived data members.
50//
51// The class contains as a private static member the Table of defined
52// materials (an ordered vector of materials).
53//
54// It is strongly not recommended to delete materials in user code.
55// All materials will be deleted automatically at the end of Geant4 session.
56//
57
58//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
59
60// 10-07-96, new data members added by L.Urban
61// 12-12-96, new data members added by L.Urban
62// 20-01-97, aesthetic rearrangement. RadLength calculation modified
63// Data members Zeff and Aeff REMOVED (i.e. passed to the Elements).
64// (local definition of Zeff in DensityEffect and FluctModel...)
65// Vacuum defined as a G4State. Mixture flag removed, M.Maire
66// 29-01-97, State=Vacuum automatically set density=0 in the contructors.
67// Subsequent protections have been put in the calculation of
68// MeanExcEnergy, ShellCorrectionVector, DensityEffect, M.Maire
69// 20-03-97, corrected initialization of pointers, M.Maire
70// 10-06-97, new data member added by V.Grichine (fSandiaPhotoAbsCof)
71// 27-06-97, new function GetElement(int), M.Maire
72// 24-02-98, fFractionVector become fMassFractionVector
73// 28-05-98, kState=kVacuum removed:
74// The vacuum is an ordinary gas vith very low density, M.Maire
75// 12-06-98, new method AddMaterial() allowing mixture of materials, M.Maire
76// 09-07-98, Ionisation parameters removed from the class, M.Maire
77// 04-08-98, new method GetMaterial(materialName), M.Maire
78// 05-10-98, change name: NumDensity -> NbOfAtomsPerVolume
79// 18-11-98, SandiaTable interface modified.
80// 19-07-99, new data member (chemicalFormula) added by V.Ivanchenko
81// 12-03-01, G4bool fImplicitElement (mma)
82// 30-03-01, suppression of the warning message in GetMaterial
83// 17-07-01, migration to STL. M. Verderi.
84// 14-09-01, Suppression of the data member fIndexInTable
85// 31-10-01, new function SetChemicalFormula() (mma)
86// 26-02-02, fIndexInTable renewed
87// 06-08-02, remove constructors with ChemicalFormula (mma)
88// 15-11-05, GetMaterial(materialName, G4bool warning=true)
89// 13-04-12, std::map<G4Material*,G4double> fMatComponents (mma)
90// 21-04-12, fMassOfMolecule (mma)
91
92//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
93
94#ifndef G4MATERIAL_HH
95#define G4MATERIAL_HH 1
96
97#include <vector>
98#include <map>
100
101#include "globals.hh"
102#include "G4ios.hh"
103#include "G4Element.hh"
105#include "G4IonisParamMat.hh"
106#include "G4SandiaTable.hh"
107#include "G4ElementVector.hh"
108#include "G4MaterialTable.hh"
109
111
112static const G4double NTP_Temperature = 293.15*CLHEP::kelvin;
113
114//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
115
117{
118public: // with description
119 //
120 // Constructor to create a material from single element
121 //
122 G4Material(const G4String& name, //its name
123 G4double z, //atomic number
124 G4double a, //mass of mole
125 G4double density, //density
126 G4State state = kStateUndefined, //solid,gas
127 G4double temp = NTP_Temperature, //temperature
128 G4double pressure = CLHEP::STP_Pressure); //pressure
129
130 //
131 // Constructor to create a material from a combination of elements
132 // and/or materials subsequently added via AddElement and/or AddMaterial
133 //
134 G4Material(const G4String& name, //its name
135 G4double density, //density
136 G4int nComponents, //nbOfComponents
137 G4State state = kStateUndefined, //solid,gas
138 G4double temp = NTP_Temperature, //temperature
139 G4double pressure = CLHEP::STP_Pressure); //pressure
140
141 //
142 // Constructor to create a material from the base material
143 //
144 G4Material(const G4String& name, //its name
145 G4double density, //density
146 const G4Material* baseMaterial, //base material
147 G4State state = kStateUndefined, //solid,gas
148 G4double temp = NTP_Temperature, //temperature
149 G4double pressure = CLHEP::STP_Pressure); //pressure
150
151 //
152 // Add an element, giving number of atoms
153 //
154 void AddElementByNumberOfAtoms(const G4Element* elm, G4int nAtoms);
155 inline
156 void AddElement(G4Element* elm, G4int nAtoms)
157 { AddElementByNumberOfAtoms(elm, nAtoms); }
158
159 //
160 // Add an element or material, giving fraction of mass
161 //
162 void AddElementByMassFraction(const G4Element* elm, G4double fraction);
163 inline void AddElement (G4Element* elm, G4double frac)
164 { AddElementByMassFraction(elm, frac); }
165
166 void AddMaterial(G4Material* material, G4double fraction);
167
168 virtual ~G4Material();
169 //
170 // retrieval methods
171 //
172 inline const G4String& GetName() const {return fName;}
173 inline const G4String& GetChemicalFormula() const {return fChemicalFormula;}
174 inline G4double GetFreeElectronDensity() const {return fFreeElecDensity;}
175 inline G4double GetDensity() const {return fDensity;}
176 inline G4State GetState() const {return fState;}
177 inline G4double GetTemperature() const {return fTemp;}
178 inline G4double GetPressure() const {return fPressure;}
179
180 //number of elements constituing this material:
181 inline size_t GetNumberOfElements() const {return fNumberOfElements;}
182
183 //vector of pointers to elements constituing this material:
184 inline const
185 G4ElementVector* GetElementVector() const {return theElementVector;}
186
187 //vector of fractional mass of each element:
188 inline const
189 G4double* GetFractionVector() const {return fMassFractionVector;}
190
191 //vector of atom count of each element:
192 inline const
193 G4int* GetAtomsVector() const {return fAtomsVector;}
194
195 //return a pointer to an element, given its index in the material:
196 inline const
197 G4Element* GetElement(G4int iel) const {return (*theElementVector)[iel];}
198
199 //vector of nb of atoms per volume of each element in this material:
200 inline const
201 G4double* GetVecNbOfAtomsPerVolume() const {return fVecNbOfAtomsPerVolume;}
202 //total number of atoms per volume:
203 inline
204 G4double GetTotNbOfAtomsPerVolume() const {return fTotNbOfAtomsPerVolume;}
205 //total number of electrons per volume:
206 inline
207 G4double GetTotNbOfElectPerVolume() const {return fTotNbOfElectPerVolume;}
208
209 //obsolete names (5-10-98) see the 2 functions above
210 inline const
211 G4double* GetAtomicNumDensityVector() const {return fVecNbOfAtomsPerVolume;}
212 inline G4double GetElectronDensity() const {return fTotNbOfElectPerVolume;}
213
214 // Radiation length:
215 inline G4double GetRadlen() const {return fRadlen;}
216
217 // Nuclear interaction length
218 inline G4double GetNuclearInterLength() const {return fNuclInterLen;}
219
220 // ionisation parameters:
221 inline G4IonisParamMat* GetIonisation() const {return fIonisation;}
222
223 // Sandia table:
224 inline G4SandiaTable* GetSandiaTable() const {return fSandiaTable; }
225
226 // Base material:
227 inline
228 const G4Material* GetBaseMaterial() const {return fBaseMaterial;}
229
230 // material components:
231 inline
232 const std::map<G4Material*,G4double>& GetMatComponents() const
233 {return fMatComponents;}
234
235 // for chemical compound
236 inline G4double GetMassOfMolecule() const {return fMassOfMolecule;}
237
238 void SetChemicalFormula(const G4String& chF);
239
241
243
244 // meaningful only for single material:
245 G4double GetZ() const;
246 G4double GetA() const;
247
248 //the MaterialPropertiesTable (if any) attached to this material:
250
252 {return fMaterialPropertiesTable;}
253
254 //the index of this material in the Table:
255 inline size_t GetIndex() const {return fIndexInTable;}
256
257 // the static Table of Materials:
258 //
260
261 static size_t GetNumberOfMaterials();
262
263 //return pointer to a material, given its name:
264 static G4Material* GetMaterial(const G4String& name, G4bool warning=true);
265
266 //return pointer to a simple material, given its propeties:
267 static G4Material* GetMaterial(G4double z, G4double a, G4double dens);
268
269 //return pointer to a composit material, given its propeties:
270 static G4Material* GetMaterial(size_t nComp, G4double dens);
271
272 //
273 //printing methods
274 //
275 friend std::ostream& operator<<(std::ostream&, const G4Material*);
276 friend std::ostream& operator<<(std::ostream&, const G4Material&);
277 friend std::ostream& operator<<(std::ostream&, const G4MaterialTable&);
278
279 G4Material(__void__&);
280 // Fake default constructor for usage restricted to direct object
281 // persistency for clients requiring preallocation of memory for
282 // persistifiable objects.
283
284 inline void SetName (const G4String& name) {fName=name;}
285
286 virtual G4bool IsExtended() const;
287
288 // operators
289 G4bool operator==(const G4Material&) const = delete;
290 G4bool operator!=(const G4Material&) const = delete;
291 G4Material(const G4Material&) = delete;
292 const G4Material& operator=(const G4Material&) = delete;
293
294private:
295
296 void InitializePointers();
297
298 // Header routine for all derived quantities
299 void ComputeDerivedQuantities();
300
301 // Compute Radiation length
302 void ComputeRadiationLength();
303
304 // Compute Nuclear interaction length
305 void ComputeNuclearInterLength();
306
307 // Copy pointers of base material
308 void CopyPointersOfBaseMaterial();
309
310 void FillVectors();
311
312 G4bool IsLocked();
313
314 static
315 G4MaterialTable theMaterialTable; // the material table
316
317 const G4Material* fBaseMaterial; // Pointer to the base material
318 G4MaterialPropertiesTable* fMaterialPropertiesTable;
319
320 //
321 // General atomic properties defined in constructor or
322 // computed from the basic data members
323 //
324
325 G4ElementVector* theElementVector;// vector of constituent G4Elements
326 G4int* fAtomsVector; // composition by atom count
327 G4double* fMassFractionVector; // composition by fractional mass
328 G4double* fVecNbOfAtomsPerVolume;// number of atoms per volume
329
330 G4IonisParamMat* fIonisation; // ionisation parameters
331 G4SandiaTable* fSandiaTable; // Sandia table
332
333 G4double fDensity; // Material density
334 G4double fFreeElecDensity; // Free electron density
335 G4double fTemp; // Temperature (defaults: STP)
336 G4double fPressure; // Pressure (defaults: STP)
337
338 G4double fTotNbOfAtomsPerVolume; // Total nb of atoms per volume
339 G4double fTotNbOfElectPerVolume; // Total nb of electrons per volume
340 G4double fRadlen; // Radiation length
341 G4double fNuclInterLen; // Nuclear interaction length
342 G4double fMassOfMolecule; // Correct for materials built by atoms count
343
344 G4State fState; // Material state
345 size_t fIndexInTable; // Index in the material table
346 G4int fNumberOfElements; // Number of G4Elements in the material
347
348 // Class members used only at initialisation
349 G4int fNbComponents; // Number of components
350 G4int fIdxComponent; // Index of a new component
351 G4bool fMassFraction; // Flag of the method to add components
352
353 // For composites built
354 std::vector<G4int>* fAtoms = nullptr;
355 std::vector<G4double>* fElmFrac = nullptr;
356 std::vector<const G4Element*>* fElm = nullptr;
357
358 // For composites built via AddMaterial()
359 std::map<G4Material*, G4double> fMatComponents;
360
361 G4String fName; // Material name
362 G4String fChemicalFormula; // Material chemical formula
363};
364
365//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
366
367#endif
std::vector< const G4Element * > G4ElementVector
std::vector< G4Material * > G4MaterialTable
G4State
Definition: G4Material.hh:110
@ kStateSolid
Definition: G4Material.hh:110
@ kStateLiquid
Definition: G4Material.hh:110
@ kStateGas
Definition: G4Material.hh:110
@ kStateUndefined
Definition: G4Material.hh:110
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4double GetPressure() const
Definition: G4Material.hh:178
void SetName(const G4String &name)
Definition: G4Material.hh:284
G4double GetDensity() const
Definition: G4Material.hh:175
G4bool operator!=(const G4Material &) const =delete
friend std::ostream & operator<<(std::ostream &, const G4Material *)
Definition: G4Material.cc:773
const G4String & GetChemicalFormula() const
Definition: G4Material.hh:173
const std::map< G4Material *, G4double > & GetMatComponents() const
Definition: G4Material.hh:232
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
const G4Material * GetBaseMaterial() const
Definition: G4Material.hh:228
G4MaterialPropertiesTable * GetMaterialPropertiesTable() const
Definition: G4Material.hh:251
const G4Material & operator=(const G4Material &)=delete
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
static size_t GetNumberOfMaterials()
Definition: G4Material.cc:684
G4State GetState() const
Definition: G4Material.hh:176
G4double GetTemperature() const
Definition: G4Material.hh:177
const G4Element * GetElement(G4int iel) const
Definition: G4Material.hh:197
virtual G4bool IsExtended() const
Definition: G4Material.cc:842
G4double GetZ() const
Definition: G4Material.cc:745
const G4double * GetFractionVector() const
Definition: G4Material.hh:189
G4double GetTotNbOfElectPerVolume() const
Definition: G4Material.hh:207
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:221
G4double GetFreeElectronDensity() const
Definition: G4Material.hh:174
void AddElement(G4Element *elm, G4int nAtoms)
Definition: G4Material.hh:156
virtual ~G4Material()
Definition: G4Material.cc:238
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:211
void SetChemicalFormula(const G4String &chF)
Definition: G4Material.cc:651
const G4int * GetAtomsVector() const
Definition: G4Material.hh:193
G4double GetA() const
Definition: G4Material.cc:759
G4SandiaTable * GetSandiaTable() const
Definition: G4Material.hh:224
G4bool operator==(const G4Material &) const =delete
void AddElementByNumberOfAtoms(const G4Element *elm, G4int nAtoms)
Definition: G4Material.cc:373
G4double GetElectronDensity() const
Definition: G4Material.hh:212
G4double GetRadlen() const
Definition: G4Material.hh:215
G4double GetMassOfMolecule() const
Definition: G4Material.hh:236
void AddElement(G4Element *elm, G4double frac)
Definition: G4Material.hh:163
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:201
static G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:677
void AddMaterial(G4Material *material, G4double fraction)
Definition: G4Material.cc:515
const G4String & GetName() const
Definition: G4Material.hh:172
void SetMaterialPropertiesTable(G4MaterialPropertiesTable *anMPT)
Definition: G4Material.cc:849
size_t GetIndex() const
Definition: G4Material.hh:255
void SetFreeElectronDensity(G4double val)
Definition: G4Material.cc:658
void AddElementByMassFraction(const G4Element *elm, G4double fraction)
Definition: G4Material.cc:454
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
Definition: G4Material.cc:691
void ComputeDensityEffectOnFly(G4bool)
Definition: G4Material.cc:665
G4Material(const G4Material &)=delete
G4double GetNuclearInterLength() const
Definition: G4Material.hh:218