Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LivermoreGammaConversionModelRC.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Author: Francesco Longo & Gerardo Depaola
29// on base of G4LivermoreGammaConversionModel
30//
31// History:
32// --------
33// 12 Apr 2009 V Ivanchenko Cleanup initialisation and generation of secondaries:
34// - apply internal high-energy limit only in constructor
35// - do not apply low-energy limit (default is 0)
36// - use CLHEP electron mass for low-enegry limit
37// - remove MeanFreePath method and table
38
39
42#include "G4SystemOfUnits.hh"
43
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
45
46using namespace std;
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49
51 const G4String& nam)
52 :G4VEmModel(nam),fParticleChange(0),smallEnergy(2.*MeV),isInitialised(false),
53 crossSectionHandler(0),meanFreePathTable(0)
54{
55 lowEnergyLimit = 2.0*electron_mass_c2;
56 highEnergyLimit = 100 * GeV;
57 SetHighEnergyLimit(highEnergyLimit);
58
59 verboseLevel= 0;
60 // Verbosity scale:
61 // 0 = nothing
62 // 1 = warning for energy non-conservation
63 // 2 = details of energy budget
64 // 3 = calculation of cross sections, file openings, sampling of atoms
65 // 4 = entering in methods
66
67 if(verboseLevel > 0) {
68 G4cout << "Livermore Gamma conversion is constructed " << G4endl
69 << "Energy range: "
70 << lowEnergyLimit / MeV << " MeV - "
71 << highEnergyLimit / GeV << " GeV"
72 << G4endl;
73 }
74}
75
76//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
77
79{
80 if (crossSectionHandler) delete crossSectionHandler;
81}
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
84
85void
87 const G4DataVector&)
88{
89 if (verboseLevel > 3)
90 G4cout << "Calling G4LivermoreGammaConversionModelRC::Initialise()" << G4endl;
91
92 if (crossSectionHandler)
93 {
94 crossSectionHandler->Clear();
95 delete crossSectionHandler;
96 }
97
98 // Read data tables for all materials
99
100 crossSectionHandler = new G4CrossSectionHandler();
101 crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
102 G4String crossSectionFile = "pair/pp-cs-";
103 crossSectionHandler->LoadData(crossSectionFile);
104
105 //
106
107 if (verboseLevel > 2)
108 G4cout << "Loaded cross section files for Livermore Gamma Conversion model RC" << G4endl;
109
110 if (verboseLevel > 0) {
111 G4cout << "Livermore Gamma Conversion model is initialized " << G4endl
112 << "Energy range: "
113 << LowEnergyLimit() / MeV << " MeV - "
114 << HighEnergyLimit() / GeV << " GeV"
115 << G4endl;
116 }
117
118 if(isInitialised) return;
120 isInitialised = true;
121}
122
123//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124
127 G4double GammaEnergy,
130{
131 if (verboseLevel > 3) {
132 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreGammaConversionModelRC"
133 << G4endl;
134 }
135 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
136
137 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
138 return cs;
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
143void G4LivermoreGammaConversionModelRC::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
144 const G4MaterialCutsCouple* couple,
145 const G4DynamicParticle* aDynamicGamma,
146 G4double,
147 G4double)
148{
149
150// The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
151// cross sections with Coulomb correction. A modified version of the random
152// number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
153
154// Note 1 : Effects due to the breakdown of the Born approximation at low
155// energy are ignored.
156// Note 2 : The differential cross section implicitly takes account of
157// pair creation in both nuclear and atomic electron fields. However triplet
158// prodution is not generated.
159
160 if (verboseLevel > 3)
161 G4cout << "Calling SampleSecondaries() of G4LivermoreGammaConversionModelRC" << G4endl;
162
163 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
164 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
165
166 G4double epsilon ;
167 G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
168 G4double electronTotEnergy;
169 G4double positronTotEnergy;
170
171
172 // Do it fast if photon energy < 2. MeV
173 if (photonEnergy < smallEnergy )
174 {
175 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
176
177 if (G4int(2*G4UniformRand()))
178 {
179 electronTotEnergy = (1. - epsilon) * photonEnergy;
180 positronTotEnergy = epsilon * photonEnergy;
181 }
182 else
183 {
184 positronTotEnergy = (1. - epsilon) * photonEnergy;
185 electronTotEnergy = epsilon * photonEnergy;
186 }
187 }
188 else
189 {
190 // Select randomly one element in the current material
191 //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
192 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
193 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
194 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries" << G4endl;
195
196 if (element == 0)
197 {
198 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries - element = 0"
199 << G4endl;
200 return;
201 }
202 G4IonisParamElm* ionisation = element->GetIonisation();
203 if (ionisation == 0)
204 {
205 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries - ionisation = 0"
206 << G4endl;
207 return;
208 }
209
210 // Extract Coulomb factor for this Element
211 G4double fZ = 8. * (ionisation->GetlogZ3());
212 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
213
214 // Limits of the screening variable
215 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
216 G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
217 G4double screenMin = std::min(4.*screenFactor,screenMax) ;
218
219 // Limits of the energy sampling
220 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
221 G4double epsilonMin = std::max(epsilon0Local,epsilon1);
222 G4double epsilonRange = 0.5 - epsilonMin ;
223
224 // Sample the energy rate of the created electron (or positron)
225 G4double screen;
226 G4double gReject ;
227
228 G4double f10 = ScreenFunction1(screenMin) - fZ;
229 G4double f20 = ScreenFunction2(screenMin) - fZ;
230 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
231 G4double normF2 = std::max(1.5 * f20,0.);
232 G4double a=393.3750918, b=115.3070201, c=810.6428451, d=19.96497475, e=1016.874592, f=1.936685510,
233 gLocal=751.2140962, h=0.099751048, i=299.9466339, j=0.002057250, k=49.81034926;
234 G4double aa=-18.6371131, bb=-1729.95248, cc=9450.971186, dd=106336.0145, ee=55143.09287, ff=-117602.840,
235 gg=-721455.467, hh=693957.8635, ii=156266.1085, jj=533209.9347;
236 G4double Rechazo = 0.;
237 G4double logepsMin = log(epsilonMin);
238 G4double NormaRC = a + b*logepsMin + c/logepsMin + d*pow(logepsMin,2.) + e/pow(logepsMin,2.) + f*pow(logepsMin,3.) +
239 gLocal/pow(logepsMin,3.) + h*pow(logepsMin,4.) + i/pow(logepsMin,4.) + j*pow(logepsMin,5.) +
240 k/pow(logepsMin,5.);
241
242 do {
243 do {
244 if (normF1 / (normF1 + normF2) > G4UniformRand() )
245 {
246 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
247 screen = screenFactor / (epsilon * (1. - epsilon));
248 gReject = (ScreenFunction1(screen) - fZ) / f10 ;
249 }
250 else
251 {
252 epsilon = epsilonMin + epsilonRange * G4UniformRand();
253 screen = screenFactor / (epsilon * (1 - epsilon));
254 gReject = (ScreenFunction2(screen) - fZ) / f20 ;
255 }
256 } while ( gReject < G4UniformRand() );
257
258 if (G4int(2*G4UniformRand())) epsilon = (1. - epsilon); // Extención de Epsilon hasta 1.
259
260 G4double logepsilon = log(epsilon);
261 G4double deltaP_R1 = 1. + (a + b*logepsilon + c/logepsilon + d*pow(logepsilon,2.) + e/pow(logepsilon,2.) +
262 f*pow(logepsilon,3.) + gLocal/pow(logepsilon,3.) + h*pow(logepsilon,4.) + i/pow(logepsilon,4.) +
263 j*pow(logepsilon,5.) + k/pow(logepsilon,5.))/100.;
264 G4double deltaP_R2 = 1.+((aa + cc*logepsilon + ee*pow(logepsilon,2.) + gg*pow(logepsilon,3.) + ii*pow(logepsilon,4.))
265 / (1. + bb*logepsilon + dd*pow(logepsilon,2.) + ff*pow(logepsilon,3.) + hh*pow(logepsilon,4.)
266 + jj*pow(logepsilon,5.) ))/100.;
267
268 if (epsilon <= 0.5)
269 {
270 Rechazo = deltaP_R1/NormaRC;
271 }
272 else
273 {
274 Rechazo = deltaP_R2/NormaRC;
275 }
276 G4cout << Rechazo << " " << NormaRC << " " << epsilon << G4endl;
277 } while (Rechazo < G4UniformRand() );
278
279 electronTotEnergy = (1. - epsilon) * photonEnergy;
280 positronTotEnergy = epsilon * photonEnergy;
281
282 } // End of epsilon sampling
283
284 // Fix charges randomly
285
286 // Scattered electron (positron) angles. ( Z - axis along the parent photon)
287 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
288 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
289
290 G4double u;
291 const G4double a1 = 0.625;
292 G4double a2 = 3. * a1;
293 // G4double d = 27. ;
294
295 // if (9. / (9. + d) > G4UniformRand())
296 if (0.25 > G4UniformRand())
297 {
298 u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
299 }
300 else
301 {
302 u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
303 }
304
305 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
306 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
307 G4double phi = twopi * G4UniformRand();
308
309 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
310 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
311
312
313 // Kinematics of the created pair:
314 // the electron and positron are assumed to have a symetric angular
315 // distribution with respect to the Z axis along the parent photon
316
317 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
318
319 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
320
321 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
322 electronDirection.rotateUz(photonDirection);
323
325 electronDirection,
326 electronKineEnergy);
327
328 // The e+ is always created (even with kinetic energy = 0) for further annihilation
329 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
330
331 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
332
333 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
334 positronDirection.rotateUz(photonDirection);
335
336 // Create G4DynamicParticle object for the particle2
338 positronDirection, positronKineEnergy);
339 // Fill output vector
340// G4cout << "Cree el e+ " << epsilon << G4endl;
341 fvect->push_back(particle1);
342 fvect->push_back(particle2);
343
344 // kill incident photon
347
348}
349
350//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
351
352G4double G4LivermoreGammaConversionModelRC::ScreenFunction1(G4double screenVariable)
353{
354 // Compute the value of the screening function 3*phi1 - phi2
355
356 G4double value;
357
358 if (screenVariable > 1.)
359 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
360 else
361 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
362
363 return value;
364}
365
366//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
367
368G4double G4LivermoreGammaConversionModelRC::ScreenFunction2(G4double screenVariable)
369{
370 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
371
372 G4double value;
373
374 if (screenVariable > 1.)
375 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
376 else
377 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
378
379 return value;
380}
381
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetfCoulomb() const
Definition: G4Element.hh:201
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:209
G4double GetlogZ3() const
G4double GetZ3() const
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
G4LivermoreGammaConversionModelRC(const G4ParticleDefinition *p=0, const G4String &nam="LivermoreConversion")
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static G4Positron * Positron()
Definition: G4Positron.cc:94
G4double FindValue(G4int Z, G4double e) const
void LoadData(const G4String &dataFile)
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void ProposeTrackStatus(G4TrackStatus status)