Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LivermoreGammaConversionModelRC Class Reference

#include <G4LivermoreGammaConversionModelRC.hh>

+ Inheritance diagram for G4LivermoreGammaConversionModelRC:

Public Member Functions

 G4LivermoreGammaConversionModelRC (const G4ParticleDefinition *p=0, const G4String &nam="LivermoreConversion")
 
virtual ~G4LivermoreGammaConversionModelRC ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)=0
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double tmax=DBL_MAX)=0
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4int SelectIsotopeNumber (const G4Element *)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=0)
 
void SetCrossSectionTable (G4PhysicsTable *)
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool LPMFlag () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy)
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetLPMFlag (G4bool val)
 
void SetDeexcitationFlag (G4bool val)
 
void ForceBuildTable (G4bool val)
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
const G4ElementGetCurrentElement () const
 

Protected Member Functions

G4double GetMeanFreePath (const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition)
 
- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 

Protected Attributes

G4ParticleChangeForGammafParticleChange
 
- Protected Attributes inherited from G4VEmModel
G4VParticleChangepParticleChange
 
G4PhysicsTablexSectionTable
 
const std::vector< G4double > * theDensityFactor
 
const std::vector< G4int > * theDensityIdx
 

Detailed Description

Definition at line 44 of file G4LivermoreGammaConversionModelRC.hh.

Constructor & Destructor Documentation

◆ G4LivermoreGammaConversionModelRC()

G4LivermoreGammaConversionModelRC::G4LivermoreGammaConversionModelRC ( const G4ParticleDefinition p = 0,
const G4String nam = "LivermoreConversion" 
)

Definition at line 50 of file G4LivermoreGammaConversionModelRC.cc.

52 :G4VEmModel(nam),fParticleChange(0),smallEnergy(2.*MeV),isInitialised(false),
53 crossSectionHandler(0),meanFreePathTable(0)
54{
55 lowEnergyLimit = 2.0*electron_mass_c2;
56 highEnergyLimit = 100 * GeV;
57 SetHighEnergyLimit(highEnergyLimit);
58
59 verboseLevel= 0;
60 // Verbosity scale:
61 // 0 = nothing
62 // 1 = warning for energy non-conservation
63 // 2 = details of energy budget
64 // 3 = calculation of cross sections, file openings, sampling of atoms
65 // 4 = entering in methods
66
67 if(verboseLevel > 0) {
68 G4cout << "Livermore Gamma conversion is constructed " << G4endl
69 << "Energy range: "
70 << lowEnergyLimit / MeV << " MeV - "
71 << highEnergyLimit / GeV << " GeV"
72 << G4endl;
73 }
74}
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585

◆ ~G4LivermoreGammaConversionModelRC()

G4LivermoreGammaConversionModelRC::~G4LivermoreGammaConversionModelRC ( )
virtual

Definition at line 78 of file G4LivermoreGammaConversionModelRC.cc.

79{
80 if (crossSectionHandler) delete crossSectionHandler;
81}

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4LivermoreGammaConversionModelRC::ComputeCrossSectionPerAtom ( const G4ParticleDefinition ,
G4double  kinEnergy,
G4double  Z,
G4double  A = 0,
G4double  cut = 0,
G4double  emax = DBL_MAX 
)
virtual

Reimplemented from G4VEmModel.

Definition at line 126 of file G4LivermoreGammaConversionModelRC.cc.

130{
131 if (verboseLevel > 3) {
132 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreGammaConversionModelRC"
133 << G4endl;
134 }
135 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
136
137 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
138 return cs;
139}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double FindValue(G4int Z, G4double e) const

◆ GetMeanFreePath()

G4double G4LivermoreGammaConversionModelRC::GetMeanFreePath ( const G4Track aTrack,
G4double  previousStepSize,
G4ForceCondition condition 
)
protected

◆ Initialise()

void G4LivermoreGammaConversionModelRC::Initialise ( const G4ParticleDefinition ,
const G4DataVector  
)
virtual

Implements G4VEmModel.

Definition at line 86 of file G4LivermoreGammaConversionModelRC.cc.

88{
89 if (verboseLevel > 3)
90 G4cout << "Calling G4LivermoreGammaConversionModelRC::Initialise()" << G4endl;
91
92 if (crossSectionHandler)
93 {
94 crossSectionHandler->Clear();
95 delete crossSectionHandler;
96 }
97
98 // Read data tables for all materials
99
100 crossSectionHandler = new G4CrossSectionHandler();
101 crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
102 G4String crossSectionFile = "pair/pp-cs-";
103 crossSectionHandler->LoadData(crossSectionFile);
104
105 //
106
107 if (verboseLevel > 2)
108 G4cout << "Loaded cross section files for Livermore Gamma Conversion model RC" << G4endl;
109
110 if (verboseLevel > 0) {
111 G4cout << "Livermore Gamma Conversion model is initialized " << G4endl
112 << "Energy range: "
113 << LowEnergyLimit() / MeV << " MeV - "
114 << HighEnergyLimit() / GeV << " GeV"
115 << G4endl;
116 }
117
118 if(isInitialised) return;
120 isInitialised = true;
121}
void LoadData(const G4String &dataFile)
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522

◆ SampleSecondaries()

void G4LivermoreGammaConversionModelRC::SampleSecondaries ( std::vector< G4DynamicParticle * > *  fvect,
const G4MaterialCutsCouple couple,
const G4DynamicParticle aDynamicGamma,
G4double  tmin,
G4double  maxEnergy 
)
virtual

Implements G4VEmModel.

Definition at line 143 of file G4LivermoreGammaConversionModelRC.cc.

148{
149
150// The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
151// cross sections with Coulomb correction. A modified version of the random
152// number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
153
154// Note 1 : Effects due to the breakdown of the Born approximation at low
155// energy are ignored.
156// Note 2 : The differential cross section implicitly takes account of
157// pair creation in both nuclear and atomic electron fields. However triplet
158// prodution is not generated.
159
160 if (verboseLevel > 3)
161 G4cout << "Calling SampleSecondaries() of G4LivermoreGammaConversionModelRC" << G4endl;
162
163 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
164 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
165
166 G4double epsilon ;
167 G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
168 G4double electronTotEnergy;
169 G4double positronTotEnergy;
170
171
172 // Do it fast if photon energy < 2. MeV
173 if (photonEnergy < smallEnergy )
174 {
175 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
176
177 if (G4int(2*G4UniformRand()))
178 {
179 electronTotEnergy = (1. - epsilon) * photonEnergy;
180 positronTotEnergy = epsilon * photonEnergy;
181 }
182 else
183 {
184 positronTotEnergy = (1. - epsilon) * photonEnergy;
185 electronTotEnergy = epsilon * photonEnergy;
186 }
187 }
188 else
189 {
190 // Select randomly one element in the current material
191 //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
192 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
193 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
194 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries" << G4endl;
195
196 if (element == 0)
197 {
198 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries - element = 0"
199 << G4endl;
200 return;
201 }
202 G4IonisParamElm* ionisation = element->GetIonisation();
203 if (ionisation == 0)
204 {
205 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries - ionisation = 0"
206 << G4endl;
207 return;
208 }
209
210 // Extract Coulomb factor for this Element
211 G4double fZ = 8. * (ionisation->GetlogZ3());
212 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
213
214 // Limits of the screening variable
215 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
216 G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
217 G4double screenMin = std::min(4.*screenFactor,screenMax) ;
218
219 // Limits of the energy sampling
220 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
221 G4double epsilonMin = std::max(epsilon0Local,epsilon1);
222 G4double epsilonRange = 0.5 - epsilonMin ;
223
224 // Sample the energy rate of the created electron (or positron)
225 G4double screen;
226 G4double gReject ;
227
228 G4double f10 = ScreenFunction1(screenMin) - fZ;
229 G4double f20 = ScreenFunction2(screenMin) - fZ;
230 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
231 G4double normF2 = std::max(1.5 * f20,0.);
232 G4double a=393.3750918, b=115.3070201, c=810.6428451, d=19.96497475, e=1016.874592, f=1.936685510,
233 gLocal=751.2140962, h=0.099751048, i=299.9466339, j=0.002057250, k=49.81034926;
234 G4double aa=-18.6371131, bb=-1729.95248, cc=9450.971186, dd=106336.0145, ee=55143.09287, ff=-117602.840,
235 gg=-721455.467, hh=693957.8635, ii=156266.1085, jj=533209.9347;
236 G4double Rechazo = 0.;
237 G4double logepsMin = log(epsilonMin);
238 G4double NormaRC = a + b*logepsMin + c/logepsMin + d*pow(logepsMin,2.) + e/pow(logepsMin,2.) + f*pow(logepsMin,3.) +
239 gLocal/pow(logepsMin,3.) + h*pow(logepsMin,4.) + i/pow(logepsMin,4.) + j*pow(logepsMin,5.) +
240 k/pow(logepsMin,5.);
241
242 do {
243 do {
244 if (normF1 / (normF1 + normF2) > G4UniformRand() )
245 {
246 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
247 screen = screenFactor / (epsilon * (1. - epsilon));
248 gReject = (ScreenFunction1(screen) - fZ) / f10 ;
249 }
250 else
251 {
252 epsilon = epsilonMin + epsilonRange * G4UniformRand();
253 screen = screenFactor / (epsilon * (1 - epsilon));
254 gReject = (ScreenFunction2(screen) - fZ) / f20 ;
255 }
256 } while ( gReject < G4UniformRand() );
257
258 if (G4int(2*G4UniformRand())) epsilon = (1. - epsilon); // Extención de Epsilon hasta 1.
259
260 G4double logepsilon = log(epsilon);
261 G4double deltaP_R1 = 1. + (a + b*logepsilon + c/logepsilon + d*pow(logepsilon,2.) + e/pow(logepsilon,2.) +
262 f*pow(logepsilon,3.) + gLocal/pow(logepsilon,3.) + h*pow(logepsilon,4.) + i/pow(logepsilon,4.) +
263 j*pow(logepsilon,5.) + k/pow(logepsilon,5.))/100.;
264 G4double deltaP_R2 = 1.+((aa + cc*logepsilon + ee*pow(logepsilon,2.) + gg*pow(logepsilon,3.) + ii*pow(logepsilon,4.))
265 / (1. + bb*logepsilon + dd*pow(logepsilon,2.) + ff*pow(logepsilon,3.) + hh*pow(logepsilon,4.)
266 + jj*pow(logepsilon,5.) ))/100.;
267
268 if (epsilon <= 0.5)
269 {
270 Rechazo = deltaP_R1/NormaRC;
271 }
272 else
273 {
274 Rechazo = deltaP_R2/NormaRC;
275 }
276 G4cout << Rechazo << " " << NormaRC << " " << epsilon << G4endl;
277 } while (Rechazo < G4UniformRand() );
278
279 electronTotEnergy = (1. - epsilon) * photonEnergy;
280 positronTotEnergy = epsilon * photonEnergy;
281
282 } // End of epsilon sampling
283
284 // Fix charges randomly
285
286 // Scattered electron (positron) angles. ( Z - axis along the parent photon)
287 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
288 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
289
290 G4double u;
291 const G4double a1 = 0.625;
292 G4double a2 = 3. * a1;
293 // G4double d = 27. ;
294
295 // if (9. / (9. + d) > G4UniformRand())
296 if (0.25 > G4UniformRand())
297 {
298 u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
299 }
300 else
301 {
302 u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
303 }
304
305 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
306 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
307 G4double phi = twopi * G4UniformRand();
308
309 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
310 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
311
312
313 // Kinematics of the created pair:
314 // the electron and positron are assumed to have a symetric angular
315 // distribution with respect to the Z axis along the parent photon
316
317 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
318
319 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
320
321 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
322 electronDirection.rotateUz(photonDirection);
323
325 electronDirection,
326 electronKineEnergy);
327
328 // The e+ is always created (even with kinetic energy = 0) for further annihilation
329 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
330
331 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
332
333 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
334 positronDirection.rotateUz(photonDirection);
335
336 // Create G4DynamicParticle object for the particle2
338 positronDirection, positronKineEnergy);
339 // Fill output vector
340// G4cout << "Cree el e+ " << epsilon << G4endl;
341 fvect->push_back(particle1);
342 fvect->push_back(particle2);
343
344 // kill incident photon
347
348}
@ fStopAndKill
#define G4UniformRand()
Definition: Randomize.hh:53
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetfCoulomb() const
Definition: G4Element.hh:201
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:209
G4double GetlogZ3() const
G4double GetZ3() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static G4Positron * Positron()
Definition: G4Positron.cc:94
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void ProposeTrackStatus(G4TrackStatus status)

Member Data Documentation

◆ fParticleChange

G4ParticleChangeForGamma* G4LivermoreGammaConversionModelRC::fParticleChange
protected

Definition at line 72 of file G4LivermoreGammaConversionModelRC.hh.

Referenced by Initialise(), and SampleSecondaries().


The documentation for this class was generated from the following files: