Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEProtonInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Hadronic Process: Low Energy Proton Inelastic Process
27// J.L. Chuma, TRIUMF, 19-Nov-1996
28
29#include <iostream>
30
33#include "G4SystemOfUnits.hh"
34#include "Randomize.hh"
35
38{
39 SetMinEnergy(0.0);
40 SetMaxEnergy(55.*GeV);
41 G4cout << "WARNING: model G4LEProtonInelastic is being deprecated and will\n"
42 << "disappear in Geant4 version 10.0" << G4endl;
43}
44
45
46void G4LEProtonInelastic::ModelDescription(std::ostream& outFile) const
47{
48 outFile << "G4LEProtonInelastic is one of the Low Energy Parameterized\n"
49 << "(LEP) models used to implement inelastic proton scattering\n"
50 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
51 << "code of H. Fesefeldt. It divides the initial collision\n"
52 << "products into backward- and forward-going clusters which are\n"
53 << "then decayed into final state hadrons. The model does not\n"
54 << "conserve energy on an event-by-event basis. It may be\n"
55 << "applied to protons with initial energies between 0 and 25\n"
56 << "GeV.\n";
57}
58
59
62 G4Nucleus& targetNucleus)
63{
65 const G4HadProjectile *originalIncident = &aTrack;
66 if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
70 return &theParticleChange;
71 }
72
73 // Create the target particle
74
75 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
76 if (verboseLevel > 1) {
77 const G4Material *targetMaterial = aTrack.GetMaterial();
78 G4cout << "G4LEProtonInelastic::ApplyYourself called" << G4endl;
79 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
80 G4cout << "target material = " << targetMaterial->GetName() << ", ";
81 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
82 << G4endl;
83 }
84
85 if (originalIncident->GetKineticEnergy()/GeV < 0.01+2.*G4UniformRand()/9.) {
86 SlowProton(originalIncident, targetNucleus);
87 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
88 delete originalTarget;
89 return &theParticleChange;
90 }
91
92 // Fermi motion and evaporation
93 // As of Geant3, the Fermi energy calculation had not been Done
94
95 G4double ek = originalIncident->GetKineticEnergy()/MeV;
96 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
97 G4ReactionProduct modifiedOriginal;
98 modifiedOriginal = *originalIncident;
99
100 G4double tkin = targetNucleus.Cinema( ek );
101 ek += tkin;
102 modifiedOriginal.SetKineticEnergy( ek*MeV );
103 G4double et = ek + amas;
104 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
105 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
106 if (pp > 0.0) {
107 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
108 modifiedOriginal.SetMomentum( momentum * (p/pp) );
109 }
110
111 // calculate black track energies
112
113 tkin = targetNucleus.EvaporationEffects( ek );
114 ek -= tkin;
115 modifiedOriginal.SetKineticEnergy( ek*MeV );
116 et = ek + amas;
117 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
118 pp = modifiedOriginal.GetMomentum().mag()/MeV;
119 if (pp > 0.0) {
120 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
121 modifiedOriginal.SetMomentum( momentum * (p/pp) );
122 }
123 const G4double cutOff = 0.1;
124 if (modifiedOriginal.GetKineticEnergy()/MeV <= cutOff) {
125 SlowProton( originalIncident, targetNucleus);
126 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
127 delete originalTarget;
128 return &theParticleChange;
129 }
130 G4ReactionProduct currentParticle = modifiedOriginal;
131 G4ReactionProduct targetParticle;
132 targetParticle = *originalTarget;
133 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
134 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
135 G4bool incidentHasChanged = false;
136 G4bool targetHasChanged = false;
137 G4bool quasiElastic = false;
138 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the sec. particles
139 G4int vecLen = 0;
140 vec.Initialize( 0 );
141
142 Cascade(vec, vecLen,
143 originalIncident, currentParticle, targetParticle,
144 incidentHasChanged, targetHasChanged, quasiElastic);
145
146 CalculateMomenta(vec, vecLen,
147 originalIncident, originalTarget, modifiedOriginal,
148 targetNucleus, currentParticle, targetParticle,
149 incidentHasChanged, targetHasChanged, quasiElastic);
150
151 SetUpChange(vec, vecLen,
152 currentParticle, targetParticle,
153 incidentHasChanged);
154
155 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
156 delete originalTarget;
157 return &theParticleChange;
158}
159
160
161void
162G4LEProtonInelastic::SlowProton(const G4HadProjectile* originalIncident,
163 G4Nucleus& targetNucleus)
164{
165 const G4double A = targetNucleus.GetA_asInt(); // atomic weight
166 const G4double Z = targetNucleus.GetZ_asInt(); // atomic number
167 //
168 // calculate Q-value of reactions
169 //
170 G4double theAtomicMass = targetNucleus.AtomicMass( A, Z );
171 G4double massVec[9];
172 massVec[0] = targetNucleus.AtomicMass( A+1.0, Z+1.0 );
173 massVec[1] = 0.;
174 if (A > Z+1.0)
175 massVec[1] = targetNucleus.AtomicMass( A , Z+1.0 );
176 massVec[2] = theAtomicMass;
177 massVec[3] = 0.;
178 if (A > 1.0 && A-1.0 > Z)
179 massVec[3] = targetNucleus.AtomicMass( A-1.0, Z );
180 massVec[4] = 0.;
181 if (A > 2.0 && A-2.0 > Z)
182 massVec[4] = targetNucleus.AtomicMass( A-2.0, Z );
183 massVec[5] = 0.;
184 if (A > 3.0 && Z > 1.0 && A-3.0 > Z-1.0)
185 massVec[5] = targetNucleus.AtomicMass( A-3.0, Z-1.0 );
186 massVec[6] = 0.;
187 if (A > 1.0 && A-1.0 > Z+1.0)
188 massVec[6] = targetNucleus.AtomicMass( A-1.0, Z+1.0 );
189 massVec[7] = massVec[3];
190 massVec[8] = 0.;
191 if (A > 1.0 && Z > 1.0)
192 massVec[8] = targetNucleus.AtomicMass( A-1.0, Z-1.0 );
193
194 G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
195 G4int vecLen = 0;
196 vec.Initialize( 0 );
197
198 theReactionDynamics.NuclearReaction( vec, vecLen, originalIncident,
199 targetNucleus, theAtomicMass, massVec );
200
203
205 for( G4int i=0; i<vecLen; ++i )
206 {
207 pd = new G4DynamicParticle();
208 pd->SetDefinition( vec[i]->GetDefinition() );
209 pd->SetMomentum( vec[i]->GetMomentum() );
211 delete vec[i];
212 }
213 }
214
215 void
216 G4LEProtonInelastic::Cascade(
218 G4int &vecLen,
219 const G4HadProjectile *originalIncident,
220 G4ReactionProduct &currentParticle,
221 G4ReactionProduct &targetParticle,
222 G4bool &incidentHasChanged,
223 G4bool &targetHasChanged,
224 G4bool &quasiElastic )
225 {
226 // derived from original FORTRAN code CASP by H. Fesefeldt (13-Sep-1987)
227 //
228 // Proton undergoes interaction with nucleon within a nucleus. Check if it is
229 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
230 // occurs and input particle is degraded in energy. No other particles are produced.
231 // If reaction is possible, find the correct number of pions/protons/neutrons
232 // produced using an interpolation to multiplicity data. Replace some pions or
233 // protons/neutrons by kaons or strange baryons according to the average
234 // multiplicity per Inelastic reaction.
235 //
236 // the center of mass energy is based on the initial energy, before
237 // Fermi motion and evaporation effects are taken into account
238 //
239 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
240 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
241 const G4double targetMass = targetParticle.GetMass()/MeV;
242 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
243 targetMass*targetMass +
244 2.0*targetMass*etOriginal );
245 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
246 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
247 { // not energetically possible to produce pion(s)
248 quasiElastic = true;
249 return;
250 }
251 static G4bool first = true;
252 const G4int numMul = 1200;
253 const G4int numSec = 60;
254 static G4double protmul[numMul], protnorm[numSec]; // proton constants
255 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
256 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
257 G4int counter, nt=0, npos=0, nneg=0, nzero=0;
258 const G4double c = 1.25;
259 const G4double b[] = { 0.70, 0.35 };
260 if( first ) // compute normalization constants, this will only be Done once
261 {
262 first = false;
263 G4int i;
264 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
265 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
266 counter = -1;
267 for( npos=0; npos<(numSec/3); ++npos )
268 {
269 for( nneg=std::max(0,npos-2); nneg<=npos; ++nneg )
270 {
271 for( nzero=0; nzero<numSec/3; ++nzero )
272 {
273 if( ++counter < numMul )
274 {
275 nt = npos+nneg+nzero;
276 if( nt>0 && nt<=numSec )
277 {
278 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c) /
279 ( theReactionDynamics.Factorial(2-npos+nneg)*
280 theReactionDynamics.Factorial(npos-nneg) );
281 protnorm[nt-1] += protmul[counter];
282 }
283 }
284 }
285 }
286 }
287 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
288 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
289 counter = -1;
290 for( npos=0; npos<numSec/3; ++npos )
291 {
292 for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
293 {
294 for( nzero=0; nzero<numSec/3; ++nzero )
295 {
296 if( ++counter < numMul )
297 {
298 nt = npos+nneg+nzero;
299 if( nt>0 && nt<=numSec )
300 {
301 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c) /
302 ( theReactionDynamics.Factorial(1-npos+nneg)*
303 theReactionDynamics.Factorial(1+npos-nneg) );
304 neutnorm[nt-1] += neutmul[counter];
305 }
306 }
307 }
308 }
309 }
310 for( i=0; i<numSec; ++i )
311 {
312 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
313 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
314 }
315 } // end of initialization
316
317 const G4double expxu = 82.; // upper bound for arg. of exp
318 const G4double expxl = -expxu; // lower bound for arg. of exp
321 G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
322 const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
323 G4double test, w0, wp, wt, wm;
324 if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
325 {
326 // suppress high multiplicity events at low momentum
327 // only one pion will be produced
328
329 npos = nneg = nzero = 0;
330 if( targetParticle.GetDefinition() == aProton )
331 {
332 test = std::exp( std::min( expxu, std::max(
333 expxl, -(1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
334 w0 = test/2.0;
335 wp = test;
336 if( G4UniformRand() < w0/(w0+wp) )
337 nzero = 1;
338 else
339 npos = 1;
340 }
341 else // target is a neutron
342 {
343 test = std::exp( std::min( expxu, std::max(
344 expxl, -(1.0+b[1])*(1.0+b[1])/(2.0*c*c) ) ) );
345 w0 = test;
346 wp = test/2.0;
347 test = std::exp( std::min( expxu, std::max(
348 expxl, -(-1.0+b[1])*(-1.0+b[1])/(2.0*c*c) ) ) );
349 wm = test/2.0;
350 wt = w0+wp+wm;
351 wp += w0;
352 G4double ran = G4UniformRand();
353 if( ran < w0/wt )
354 nzero = 1;
355 else if( ran < wp/wt )
356 npos = 1;
357 else
358 nneg = 1;
359 }
360 }
361 else // (availableEnergy >= 2.0*GeV) || (random number < supp[ieab])
362 {
363 G4double n, anpn;
364 GetNormalizationConstant( availableEnergy, n, anpn );
365 G4double ran = G4UniformRand();
366 G4double dum, excs = 0.0;
367 if( targetParticle.GetDefinition() == aProton )
368 {
369 counter = -1;
370 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
371 {
372 for( nneg=std::max(0,npos-2); nneg<=npos && ran>=excs; ++nneg )
373 {
374 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
375 {
376 if( ++counter < numMul )
377 {
378 nt = npos+nneg+nzero;
379 if( nt>0 && nt<=numSec )
380 {
381 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
382 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
383 if( std::fabs(dum) < 1.0 )
384 {
385 if( test >= 1.0e-10 )excs += dum*test;
386 } else {
387 excs += dum*test;
388 }
389 }
390 }
391 }
392 }
393 }
394 if( ran >= excs ) // 3 previous loops continued to the end
395 {
396 quasiElastic = true;
397 return;
398 }
399 }
400 else // target must be a neutron
401 {
402 counter = -1;
403 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
404 {
405 for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
406 {
407 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
408 {
409 if( ++counter < numMul )
410 {
411 nt = npos+nneg+nzero;
412 if( nt>0 && nt<=numSec )
413 {
414 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
415 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
416 if( std::fabs(dum) < 1.0 )
417 {
418 if( test >= 1.0e-10 )excs += dum*test;
419 } else {
420 excs += dum*test;
421 }
422 }
423 }
424 }
425 }
426 }
427 if( ran >= excs ) // 3 previous loops continued to the end
428 {
429 quasiElastic = true;
430 return;
431 }
432 }
433 npos--; nneg--; nzero--;
434 }
435 if( targetParticle.GetDefinition() == aProton )
436 {
437 switch( npos-nneg )
438 {
439 case 1:
440 if( G4UniformRand() < 0.5 )
441 {
442 targetParticle.SetDefinitionAndUpdateE( aNeutron );
443 targetHasChanged = true;
444 } else {
445 currentParticle.SetDefinitionAndUpdateE( aNeutron );
446 incidentHasChanged = true;
447 }
448 break;
449 case 2:
450 currentParticle.SetDefinitionAndUpdateE( aNeutron );
451 targetParticle.SetDefinitionAndUpdateE( aNeutron );
452 incidentHasChanged = true;
453 targetHasChanged = true;
454 break;
455 default:
456 break;
457 }
458 }
459 else // target is a neutron
460 {
461 switch( npos-nneg )
462 {
463 case 0:
464 if( G4UniformRand() < 0.333333 )
465 {
466 currentParticle.SetDefinitionAndUpdateE( aNeutron );
467 targetParticle.SetDefinitionAndUpdateE( aProton );
468 incidentHasChanged = true;
469 targetHasChanged = true;
470 }
471 break;
472 case 1:
473 currentParticle.SetDefinitionAndUpdateE( aNeutron );
474 incidentHasChanged = true;
475 break;
476 default:
477 targetParticle.SetDefinitionAndUpdateE( aProton );
478 targetHasChanged = true;
479 break;
480 }
481 }
482 SetUpPions( npos, nneg, nzero, vec, vecLen );
483 return;
484 }
485
486 /* end of file */
487
@ isAlive
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4ParticleDefinition * GetDefinition() const
void SetMomentum(const G4ThreeVector &momentum)
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
G4ReactionDynamics theReactionDynamics
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
virtual void ModelDescription(std::ostream &outFile) const
G4LEProtonInelastic(const G4String &name="G4LEProtonInelastic")
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void NuclearReaction(G4FastVector< G4ReactionProduct, 4 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4Nucleus &aNucleus, const G4double theAtomicMass, const G4double *massVec)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
const G4double pi