Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4StatMFMacroCanonical.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// by V. Lara
30// --------------------------------------------------------------------
31//
32// Modified:
33// 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor
34// Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute,
35// Moscow, [email protected]) fixed infinite loop for
36// a fagment with Z=A; fixed memory leak
37
40#include "G4SystemOfUnits.hh"
41#include "G4Pow.hh"
42
43// constructor
45{
46
47 // Get memory for clusters
48 _theClusters.push_back(new G4StatMFMacroNucleon); // Size 1
49 _theClusters.push_back(new G4StatMFMacroBiNucleon); // Size 2
50 _theClusters.push_back(new G4StatMFMacroTriNucleon); // Size 3
51 _theClusters.push_back(new G4StatMFMacroTetraNucleon); // Size 4
52 for (G4int i = 4; i < theFragment.GetA_asInt(); i++)
53 _theClusters.push_back(new G4StatMFMacroMultiNucleon(i+1)); // Size 5 ... A
54
55 // Perform class initialization
56 Initialize(theFragment);
57
58}
59
60// destructor
62{
63 // garbage collection
64 if (!_theClusters.empty())
65 {
66 std::for_each(_theClusters.begin(),_theClusters.end(),DeleteFragment());
67 }
68}
69
70// Initialization method
71void G4StatMFMacroCanonical::Initialize(const G4Fragment & theFragment)
72{
73
74 G4int A = theFragment.GetA_asInt();
75 G4int Z = theFragment.GetZ_asInt();
76 G4double x = 1.0 - 2.0*Z/G4double(A);
77 G4Pow* g4pow = G4Pow::GetInstance();
78
79 // Free Internal energy at T = 0
80 __FreeInternalE0 = A*( -G4StatMFParameters::GetE0() + // Volume term (for T = 0)
81 G4StatMFParameters::GetGamma0()*x*x) // Symmetry term
82 +
83 G4StatMFParameters::GetBeta0()*g4pow->Z23(A) + // Surface term (for T = 0)
84 (3.0/5.0)*elm_coupling*Z*Z/(G4StatMFParameters::Getr0()* // Coulomb term
85 g4pow->Z13(A));
86
87 CalculateTemperature(theFragment);
88
89 return;
90}
91
92void G4StatMFMacroCanonical::CalculateTemperature(const G4Fragment & theFragment)
93{
94 // Excitation Energy
95 G4double U = theFragment.GetExcitationEnergy();
96
97 G4int A = theFragment.GetA_asInt();
98 G4int Z = theFragment.GetZ_asInt();
99
100 // Fragment Multiplicity
101 G4double FragMult = std::max((1.0+(2.31/MeV)*(U/A - 3.5*MeV))*A/100.0, 2.0);
102
103
104 // Parameter Kappa
105 _Kappa = (1.0+elm_coupling*(std::pow(FragMult,1./3.)-1)/
107 _Kappa = _Kappa*_Kappa*_Kappa - 1.0;
108
109
110 G4StatMFMacroTemperature * theTemp = new
111 G4StatMFMacroTemperature(A,Z,U,__FreeInternalE0,_Kappa,&_theClusters);
112
114 _ChemPotentialNu = theTemp->GetChemicalPotentialNu();
115 _ChemPotentialMu = theTemp->GetChemicalPotentialMu();
117 __MeanEntropy = theTemp->GetEntropy();
118
119 delete theTemp;
120
121 return;
122}
123
124
125// --------------------------------------------------------------------------
126
128 // Calculate total fragments multiplicity, fragment atomic numbers and charges
129{
130 G4int A = theFragment.GetA_asInt();
131 G4int Z = theFragment.GetZ_asInt();
132
133 std::vector<G4int> ANumbers(A);
134
135 G4double Multiplicity = ChooseA(A,ANumbers);
136
137 std::vector<G4int> FragmentsA;
138
139 G4int i = 0;
140 for (i = 0; i < A; i++)
141 {
142 for (G4int j = 0; j < ANumbers[i]; j++) FragmentsA.push_back(i+1);
143 }
144
145 // Sort fragments in decreasing order
146 G4int im = 0;
147 for (G4int j = 0; j < Multiplicity; j++)
148 {
149 G4int FragmentsAMax = 0;
150 im = j;
151 for (i = j; i < Multiplicity; i++)
152 {
153 if (FragmentsA[i] <= FragmentsAMax) { continue; }
154 else
155 {
156 im = i;
157 FragmentsAMax = FragmentsA[im];
158 }
159 }
160
161 if (im != j)
162 {
163 FragmentsA[im] = FragmentsA[j];
164 FragmentsA[j] = FragmentsAMax;
165 }
166 }
167
168 return ChooseZ(Z,FragmentsA);
169}
170
171
172G4double G4StatMFMacroCanonical::ChooseA(G4int A, std::vector<G4int> & ANumbers)
173 // Determines fragments multiplicities and compute total fragment multiplicity
174{
175 G4double multiplicity = 0.0;
176 G4int i;
177
178 std::vector<G4double> AcumMultiplicity;
179 AcumMultiplicity.reserve(A);
180
181 AcumMultiplicity.push_back((*(_theClusters.begin()))->GetMeanMultiplicity());
182 for (std::vector<G4VStatMFMacroCluster*>::iterator it = _theClusters.begin()+1;
183 it != _theClusters.end(); ++it)
184 {
185 AcumMultiplicity.push_back((*it)->GetMeanMultiplicity()+AcumMultiplicity.back());
186 }
187
188 G4int CheckA;
189 do {
190 CheckA = -1;
191 G4int SumA = 0;
192 G4int ThisOne = 0;
193 multiplicity = 0.0;
194 for (i = 0; i < A; i++) ANumbers[i] = 0;
195 do {
197 for (i = 0; i < A; i++) {
198 if (RandNumber < AcumMultiplicity[i]) {
199 ThisOne = i;
200 break;
201 }
202 }
203 multiplicity++;
204 ANumbers[ThisOne] = ANumbers[ThisOne]+1;
205 SumA += ThisOne+1;
206 CheckA = A - SumA;
207
208 } while (CheckA > 0);
209
210 } while (CheckA < 0 || std::abs(__MeanMultiplicity - multiplicity) > std::sqrt(__MeanMultiplicity) + 1./2.);
211
212 return multiplicity;
213}
214
215
216G4StatMFChannel * G4StatMFMacroCanonical::ChooseZ(G4int & Z,
217 std::vector<G4int> & FragmentsA)
218 //
219{
220 G4Pow* g4pow = G4Pow::GetInstance();
221 std::vector<G4int> FragmentsZ;
222
223 G4int DeltaZ = 0;
224 G4double CP = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
225 (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
226
227 G4int multiplicity = FragmentsA.size();
228
229 do
230 {
231 FragmentsZ.clear();
232 G4int SumZ = 0;
233 for (G4int i = 0; i < multiplicity; i++)
234 {
235 G4int A = FragmentsA[i];
236 if (A <= 1)
237 {
238 G4double RandNumber = G4UniformRand();
239 if (RandNumber < (*_theClusters.begin())->GetZARatio())
240 {
241 FragmentsZ.push_back(1);
242 SumZ += FragmentsZ[i];
243 }
244 else FragmentsZ.push_back(0);
245 }
246 else
247 {
248 G4double RandZ;
249 G4double CC = 8.0*G4StatMFParameters::GetGamma0()+2.0*CP*g4pow->Z23(FragmentsA[i]);
250 G4double ZMean;
251 if (FragmentsA[i] > 1 && FragmentsA[i] < 5) { ZMean = 0.5*FragmentsA[i]; }
252 else ZMean = FragmentsA[i]*(4.0*G4StatMFParameters::GetGamma0()+_ChemPotentialNu)/CC;
253 G4double ZDispersion = std::sqrt(FragmentsA[i]*__MeanTemperature/CC);
254 G4int z;
255 do
256 {
257 RandZ = G4RandGauss::shoot(ZMean,ZDispersion);
258 z = static_cast<G4int>(RandZ+0.5);
259 } while (z < 0 || z > A);
260 FragmentsZ.push_back(z);
261 SumZ += z;
262 }
263 }
264 DeltaZ = Z - SumZ;
265 }
266 while (std::abs(DeltaZ) > 1);
267
268 // DeltaZ can be 0, 1 or -1
269 G4int idx = 0;
270 if (DeltaZ < 0.0)
271 {
272 while (FragmentsZ[idx] < 1) { ++idx; }
273 }
274 FragmentsZ[idx] += DeltaZ;
275
276 G4StatMFChannel * theChannel = new G4StatMFChannel;
277 for (G4int i = multiplicity-1; i >= 0; i--)
278 {
279 theChannel->CreateFragment(FragmentsA[i],FragmentsZ[i]);
280 }
281
282 return theChannel;
283}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
Definition: G4Pow.hh:54
static G4Pow * GetInstance()
Definition: G4Pow.cc:50
G4double Z23(G4int Z)
Definition: G4Pow.hh:134
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
void CreateFragment(G4int A, G4int Z)
G4StatMFMacroCanonical(G4Fragment const &theFragment)
G4StatMFChannel * ChooseAandZ(const G4Fragment &theFragment)
G4double GetChemicalPotentialMu(void) const
G4double GetChemicalPotentialNu(void) const
G4double GetMeanMultiplicity(void) const
static G4double Getr0()
static G4double GetGamma0()
static G4double GetKappaCoulomb()
static G4double GetBeta0()
static G4double GetE0()