Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4StatMFMacroTemperature.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Hadronic Process: Nuclear De-excitations
30// by V. Lara
31//
32// Modified:
33// 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor
34// Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute,
35// Moscow, [email protected]) make algorithm closer to
36// original MF model
37// 16.04.10 V.Ivanchenko improved logic of solving equation for tempetature
38// to protect code from rare unwanted exception; moved constructor
39// and destructor to source
40// 28.10.10 V.Ivanchenko defined members in constructor and cleaned up
41
44#include "G4SystemOfUnits.hh"
45
47 const G4double ExEnergy, const G4double FreeE0, const G4double kappa,
48 std::vector<G4VStatMFMacroCluster*> * ClusterVector) :
49 theA(anA),
50 theZ(aZ),
51 _ExEnergy(ExEnergy),
52 _FreeInternalE0(FreeE0),
53 _Kappa(kappa),
54 _MeanMultiplicity(0.0),
55 _MeanTemperature(0.0),
56 _ChemPotentialMu(0.0),
57 _ChemPotentialNu(0.0),
58 _MeanEntropy(0.0),
59 _theClusters(ClusterVector)
60{}
61
63{}
64
65
67{
68 // Inital guess for the interval of the ensemble temperature values
69 G4double Ta = 0.5;
70 G4double Tb = std::max(std::sqrt(_ExEnergy/(theA*0.12)),0.01*MeV);
71
72 G4double fTa = this->operator()(Ta);
73 G4double fTb = this->operator()(Tb);
74
75 // Bracketing the solution
76 // T should be greater than 0.
77 // The interval is [Ta,Tb]
78 // We start with a value for Ta = 0.5 MeV
79 // it should be enough to have fTa > 0 If it isn't
80 // the case, we decrease Ta. But carefully, because
81 // fTa growes very fast when Ta is near 0 and we could have
82 // an overflow.
83
84 G4int iterations = 0;
85 while (fTa < 0.0 && ++iterations < 10) {
86 Ta -= 0.5*Ta;
87 fTa = this->operator()(Ta);
88 }
89 // Usually, fTb will be less than 0, but if it is not the case:
90 iterations = 0;
91 while (fTa*fTb > 0.0 && iterations++ < 10) {
92 Tb += 2.*std::fabs(Tb-Ta);
93 fTb = this->operator()(Tb);
94 }
95
96 if (fTa*fTb > 0.0) {
97 G4cerr <<"G4StatMFMacroTemperature:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
98 G4cerr <<"G4StatMFMacroTemperature:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
99 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't bracket the solution.");
100 }
101
103 theSolver->SetIntervalLimits(Ta,Tb);
104 if (!theSolver->Crenshaw(*this)){
105 G4cout <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
106 G4cout <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
107 }
108 _MeanTemperature = theSolver->GetRoot();
109 G4double FunctionValureAtRoot = this->operator()(_MeanTemperature);
110 delete theSolver;
111
112 // Verify if the root is found and it is indeed within the physical domain,
113 // say, between 1 and 50 MeV, otherwise try Brent method:
114 if (std::fabs(FunctionValureAtRoot) > 5.e-2) {
115 if (_MeanTemperature < 1. || _MeanTemperature > 50.) {
116 G4cout << "Crenshaw method failed; function = " << FunctionValureAtRoot
117 << " solution? = " << _MeanTemperature << " MeV " << G4endl;
119 theSolverBrent->SetIntervalLimits(Ta,Tb);
120 if (!theSolverBrent->Brent(*this)){
121 G4cout <<"G4StatMFMacroTemperature, Brent method failed:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
122 G4cout <<"G4StatMFMacroTemperature, Brent method failed:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
123 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method.");
124 }
125
126 _MeanTemperature = theSolverBrent->GetRoot();
127 FunctionValureAtRoot = this->operator()(_MeanTemperature);
128 delete theSolverBrent;
129 }
130 if (std::abs(FunctionValureAtRoot) > 5.e-2) {
131 //if (_MeanTemperature < 1. || _MeanTemperature > 50. || std::abs(FunctionValureAtRoot) > 5.e-2) {
132 G4cout << "Brent method failed; function = " << FunctionValureAtRoot << " solution? = " << _MeanTemperature << " MeV " << G4endl;
133 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method.");
134 }
135 }
136 //G4cout << "G4StatMFMacroTemperature::CalcTemperature: function = " << FunctionValureAtRoot
137 // << " T(MeV)= " << _MeanTemperature << G4endl;
138 return _MeanTemperature;
139}
140
141
142
143G4double G4StatMFMacroTemperature::FragsExcitEnergy(const G4double T)
144 // Calculates excitation energy per nucleon and summed fragment multiplicity and entropy
145{
146
147 // Model Parameters
148 G4double R0 = G4StatMFParameters::Getr0()*std::pow(theA,1./3.);
149 G4double R = R0*std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(), 1./3.);
150 G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R0;
151
152
153 // Calculate Chemical potentials
154 CalcChemicalPotentialNu(T);
155
156
157 // Average total fragment energy
158 G4double AverageEnergy = 0.0;
159 std::vector<G4VStatMFMacroCluster*>::iterator i;
160 for (i = _theClusters->begin(); i != _theClusters->end(); ++i)
161 {
162 AverageEnergy += (*i)->GetMeanMultiplicity() * (*i)->CalcEnergy(T);
163 }
164
165 // Add Coulomb energy
166 AverageEnergy += (3./5.)*elm_coupling*theZ*theZ/R;
167
168 // Calculate mean entropy
169 _MeanEntropy = 0.0;
170 for (i = _theClusters->begin(); i != _theClusters->end(); ++i)
171 {
172 _MeanEntropy += (*i)->CalcEntropy(T,FreeVol);
173 }
174
175 // Excitation energy per nucleon
176 return AverageEnergy - _FreeInternalE0;
177
178}
179
180
181void G4StatMFMacroTemperature::CalcChemicalPotentialNu(const G4double T)
182 // Calculates the chemical potential \nu
183
184{
185 G4StatMFMacroChemicalPotential * theChemPot = new
186 G4StatMFMacroChemicalPotential(theA,theZ,_Kappa,T,_theClusters);
187
188
189 _ChemPotentialNu = theChemPot->CalcChemicalPotentialNu();
190 _ChemPotentialMu = theChemPot->GetChemicalPotentialMu();
191 _MeanMultiplicity = theChemPot->GetMeanMultiplicity();
192
193 delete theChemPot;
194
195 return;
196
197}
198
199
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
G4bool Brent(Function &theFunction)
void SetIntervalLimits(const G4double Limit1, const G4double Limit2)
G4double GetRoot(void) const
Definition: G4Solver.hh:77
G4bool Crenshaw(Function &theFunction)
G4StatMFMacroTemperature(const G4double anA, const G4double aZ, const G4double ExEnergy, const G4double FreeE0, const G4double kappa, std::vector< G4VStatMFMacroCluster * > *ClusterVector)
G4double operator()(const G4double T)
static G4double Getr0()
static G4double GetKappaCoulomb()