Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ePolarizedBremsstrahlungModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4ePolarizedBremsstrahlungModel
34//
35// Author: Karim Laihem
36//
37// Creation date: 12.03.2005
38//
39// Modifications:
40// 19-08-06 addapted to accomodate geant481 structure
41//
42//
43// Class Description:
44//
45//
46// -------------------------------------------------------------------
47//
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
50
55
57 const G4String& nam)
59 crossSectionCalculator(0)
60{
61}
62
63//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64
66{
68}
69
70//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
71
73 const G4DataVector& d)
74{
78}
79
80
81//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
82
83
84void G4ePolarizedBremsstrahlungModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
85 const G4MaterialCutsCouple* couple,
86 const G4DynamicParticle* dp,
87 G4double tmin,
88 G4double maxEnergy)
89{
90 G4eBremsstrahlungModel::SampleSecondaries(vdp,couple,dp,tmin,maxEnergy);
91 G4int num = vdp->size();
92
93 if(num > 0) {
94 G4double lepEnergy0 = dp->GetKineticEnergy();
95 G4double gamEnergy1 = (*vdp)[0]->GetKineticEnergy();
96 G4double sintheta = dp->GetMomentumDirection().cross((*vdp)[0]->GetMomentumDirection()).mag();
97 if (sintheta>1.) sintheta=1.;
98
99
100 G4StokesVector beamPol = dp->GetPolarization();
101
102 // determine interaction plane
103 G4ThreeVector nInteractionFrame =
106
107 // transform polarization into interaction frame
108 beamPol.InvRotateAz(nInteractionFrame,dp->GetMomentumDirection());
109
110 // calulcate polarization transfer
111 crossSectionCalculator->SetMaterial(GetCurrentElement()->GetN(), // number of nucleons
112 GetCurrentElement()->GetZ(),
113 GetCurrentElement()->GetfCoulomb());
114 crossSectionCalculator->Initialize(lepEnergy0, gamEnergy1, sintheta,
115 beamPol, G4StokesVector::ZERO);
116
117 // deterimine final state polarization
119 newBeamPol.RotateAz(nInteractionFrame,
122
123 if (num!=1) G4cout<<" WARNING "<<num<<" secondaries in polarized bremsstrahlung not supported!\n";
124 for (G4int i=0; i<num; i++) {
126 photonPol.SetPhoton();
127 photonPol.RotateAz(nInteractionFrame,(*vdp)[i]->GetMomentumDirection());
128 (*vdp)[i]->SetPolarization(photonPol.p1(),
129 photonPol.p2(),
130 photonPol.p3());
131 }
132 }
133 return;
134}
135// The emitted gamma energy is sampled using a parametrized formula
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4DLLIMPORT std::ostream G4cout
Hep3Vector cross(const Hep3Vector &) const
double mag() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4ThreeVector & GetPolarization() const
const G4ThreeVector & GetProposedMomentumDirection() const
void ProposePolarization(const G4ThreeVector &dir)
static G4ThreeVector GetFrame(const G4ThreeVector &, const G4ThreeVector &)
G4double p3() const
G4double p1() const
static const G4StokesVector ZERO
void InvRotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
G4double p2() const
void RotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
const G4Element * GetCurrentElement() const
Definition: G4VEmModel.hh:391
void SetMaterial(G4double A, G4double Z, G4double coul)
virtual G4StokesVector GetPol3()
virtual G4StokesVector GetPol2()
virtual void Initialize(G4double, G4double, G4double, const G4StokesVector &p0, const G4StokesVector &p1, G4int flag=0)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4ParticleChangeForLoss * fParticleChange
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4ePolarizedBremsstrahlungModel(const G4ParticleDefinition *p=0, const G4String &nam="PolBrem")
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)