Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QMDNucleus Class Reference

#include <G4QMDNucleus.hh>

+ Inheritance diagram for G4QMDNucleus:

Public Member Functions

 G4QMDNucleus ()
 
G4LorentzVector Get4Momentum ()
 
G4int GetMassNumber ()
 
G4int GetAtomicNumber ()
 
void CalEnergyAndAngularMomentumInCM ()
 
G4double GetNuclearMass ()
 
void SetTotalPotential (G4double x)
 
G4double GetExcitationEnergy ()
 
G4int GetAngularMomentum ()
 
- Public Member Functions inherited from G4QMDSystem
 G4QMDSystem ()
 
virtual ~G4QMDSystem ()
 
void SetParticipant (G4QMDParticipant *particle)
 
void SetSystem (G4QMDSystem *, G4ThreeVector, G4ThreeVector)
 
void SubtractSystem (G4QMDSystem *)
 
G4QMDParticipantEraseParticipant (G4int i)
 
void DeleteParticipant (G4int i)
 
void InsertParticipant (G4QMDParticipant *particle, G4int j)
 
G4int GetTotalNumberOfParticipant ()
 
G4QMDParticipantGetParticipant (G4int i)
 
void IncrementCollisionCounter ()
 
G4int GetNOCollision ()
 
void ShowParticipants ()
 
void Clear ()
 

Additional Inherited Members

- Protected Attributes inherited from G4QMDSystem
std::vector< G4QMDParticipant * > participants
 

Detailed Description

Definition at line 43 of file G4QMDNucleus.hh.

Constructor & Destructor Documentation

◆ G4QMDNucleus()

G4QMDNucleus::G4QMDNucleus ( )

Definition at line 38 of file G4QMDNucleus.cc.

39{
41 hbc = parameters->Get_hbc();
42
43 jj = 0; // will be calcualted in CalEnergyAndAngularMomentumInCM;
44 potentialEnergy = 0.0; // will be set through set method
45 excitationEnergy = 0.0;
46}
static G4QMDParameters * GetInstance()

Member Function Documentation

◆ CalEnergyAndAngularMomentumInCM()

void G4QMDNucleus::CalEnergyAndAngularMomentumInCM ( )

Definition at line 138 of file G4QMDNucleus.cc.

139{
140
141 //G4cout << "CalEnergyAndAngularMomentumInCM " << this->GetAtomicNumber() << " " << GetMassNumber() << G4endl;
142
143 G4double gamma = Get4Momentum().gamma();
144 G4ThreeVector beta = Get4Momentum().v()/ Get4Momentum().e();
145
146 G4ThreeVector pcm0( 0.0 ) ;
147
149 pcm.resize( n );
150
151 for ( G4int i= 0; i < n ; i++ )
152 {
154
155 G4double trans = gamma / ( gamma + 1.0 ) * p_i * beta;
156 pcm[i] = p_i - trans*beta;
157
158 pcm0 += pcm[i];
159 }
160
161 pcm0 = pcm0 / double ( n );
162
163 //G4cout << "pcm0 " << pcm0 << G4endl;
164
165 for ( G4int i= 0; i < n ; i++ )
166 {
167 pcm[i] += -pcm0;
168 //G4cout << "pcm " << i << " " << pcm[i] << G4endl;
169 }
170
171
172 G4double tmass = 0;
173 G4ThreeVector rcm0( 0.0 ) ;
174 rcm.resize( n );
175 es.resize( n );
176
177 for ( G4int i= 0; i < n ; i++ )
178 {
180 G4double trans = gamma / ( gamma + 1.0 ) * ri * beta;
181
182 es[i] = std::sqrt ( G4Pow::GetInstance()->powN ( GetParticipant( i )->GetMass() , 2 ) + pcm[i]*pcm[i] );
183
184 rcm[i] = ri + trans*beta;
185
186 rcm0 += rcm[i]*es[i];
187
188 tmass += es[i];
189 }
190
191 rcm0 = rcm0/tmass;
192
193 for ( G4int i= 0; i < n ; i++ )
194 {
195 rcm[i] += -rcm0;
196 //G4cout << "rcm " << i << " " << rcm[i] << G4endl;
197 }
198
199// Angular momentum
200
201 G4ThreeVector rl ( 0.0 );
202 for ( G4int i= 0; i < n ; i++ )
203 {
204 rl += rcm[i].cross ( pcm[i] );
205 }
206
207// DHW: move hbc outside of sqrt to get correct units
208// jj = int ( std::sqrt ( rl*rl / hbc ) + 0.5 );
209
210 jj = int (std::sqrt(rl*rl)/hbc + 0.5);
211
212// kinetic energy per nucleon in CM
213
214 G4double totalMass = 0.0;
215 for ( G4int i= 0; i < n ; i++ )
216 {
217 // following two lines are equivalent
218 //totalMass += GetParticipant( i )->GetDefinition()->GetPDGMass()/GeV;
219 totalMass += GetParticipant( i )->GetMass();
220 }
221
222 //G4double kineticEnergyPerNucleon = ( std::accumulate ( es.begin() , es.end() , 0.0 ) - totalMass )/n;
223
224// Total (not per nucleion ) Binding Energy
225 G4double bindingEnergy = ( std::accumulate ( es.begin() , es.end() , 0.0 ) -totalMass ) + potentialEnergy;
226
227 //G4cout << "KineticEnergyPerNucleon in GeV " << kineticEnergyPerNucleon << G4endl;
228 //G4cout << "KineticEnergySum in GeV " << std::accumulate ( es.begin() , es.end() , 0.0 ) - totalMass << G4endl;
229 //G4cout << "PotentialEnergy in GeV " << potentialEnergy << G4endl;
230 //G4cout << "BindingEnergy in GeV " << bindingEnergy << G4endl;
231 //G4cout << "G4BindingEnergy in GeV " << G4NucleiProperties::GetBindingEnergy( GetAtomicNumber() , GetMassNumber() )/GeV << G4endl;
232
234 //G4cout << "excitationEnergy in GeV " << excitationEnergy << G4endl;
235 if ( excitationEnergy < 0 ) excitationEnergy = 0.0;
236
237}
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
Hep3Vector v() const
static G4double GetBindingEnergy(const G4int A, const G4int Z)
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4int GetAtomicNumber()
G4int GetMassNumber()
G4LorentzVector Get4Momentum()
G4ThreeVector GetPosition()
G4ThreeVector GetMomentum()
G4QMDParticipant * GetParticipant(G4int i)
G4int GetTotalNumberOfParticipant()
G4double bindingEnergy(G4int A, G4int Z)

Referenced by G4QMDReaction::ApplyYourself(), and G4QMDMeanField::SetNucleus().

◆ Get4Momentum()

G4LorentzVector G4QMDNucleus::Get4Momentum ( )

Definition at line 56 of file G4QMDNucleus.cc.

57{
58 G4LorentzVector p( 0 );
59 std::vector< G4QMDParticipant* >::iterator it;
60 for ( it = participants.begin() ; it != participants.end() ; it++ )
61 p += (*it)->Get4Momentum();
62
63 return p;
64}
std::vector< G4QMDParticipant * > participants

Referenced by CalEnergyAndAngularMomentumInCM().

◆ GetAngularMomentum()

G4int G4QMDNucleus::GetAngularMomentum ( )
inline

Definition at line 65 of file G4QMDNucleus.hh.

65{ return jj; };

◆ GetAtomicNumber()

G4int G4QMDNucleus::GetAtomicNumber ( )

Definition at line 89 of file G4QMDNucleus.cc.

90{
91 G4int Z = 0;
92 std::vector< G4QMDParticipant* >::iterator it;
93 for ( it = participants.begin() ; it != participants.end() ; it++ )
94 {
95 if ( (*it)->GetDefinition() == G4Proton::Proton() )
96 Z++;
97 }
98 return Z;
99}
static G4Proton * Proton()
Definition G4Proton.cc:90

Referenced by CalEnergyAndAngularMomentumInCM(), and GetNuclearMass().

◆ GetExcitationEnergy()

G4double G4QMDNucleus::GetExcitationEnergy ( )
inline

Definition at line 63 of file G4QMDNucleus.hh.

63{ return excitationEnergy; };

◆ GetMassNumber()

G4int G4QMDNucleus::GetMassNumber ( )

Definition at line 68 of file G4QMDNucleus.cc.

69{
70
71 G4int A = 0;
72 std::vector< G4QMDParticipant* >::iterator it;
73 for ( it = participants.begin() ; it != participants.end() ; it++ )
74 {
75 if ( (*it)->GetDefinition() == G4Proton::Proton()
76 || (*it)->GetDefinition() == G4Neutron::Neutron() )
77 A++;
78 }
79
80 if ( A == 0 ) {
81 throw G4HadronicException(__FILE__, __LINE__, "G4QMDNucleus has the mass number of 0!");
82 }
83
84 return A;
85}
const G4double A[17]
static G4Neutron * Neutron()
Definition G4Neutron.cc:101

Referenced by CalEnergyAndAngularMomentumInCM(), G4QMDGroundStateNucleus::G4QMDGroundStateNucleus(), and GetNuclearMass().

◆ GetNuclearMass()

G4double G4QMDNucleus::GetNuclearMass ( )

Definition at line 103 of file G4QMDNucleus.cc.

104{
105
107
108 if ( mass == 0.0 )
109 {
110
113 G4int N = A - Z;
114
115// Weizsacker-Bethe
116
117 G4double Av = 16*MeV;
118 G4double As = 17*MeV;
119 G4double Ac = 0.7*MeV;
120 G4double Asym = 23*MeV;
121
122 G4double BE = Av * A
123 - As * G4Pow::GetInstance()->A23 ( G4double ( A ) )
124 - Ac * Z*Z/G4Pow::GetInstance()->A13 ( G4double ( A ) )
125 - Asym * ( N - Z )* ( N - Z ) / A;
126
127 mass = Z * G4Proton::Proton()->GetPDGMass()
129 - BE;
130
131 }
132
133 return mass;
134}
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double A13(G4double A) const
Definition G4Pow.cc:116
G4double A23(G4double A) const
Definition G4Pow.hh:131
#define N
Definition crc32.c:57

◆ SetTotalPotential()

void G4QMDNucleus::SetTotalPotential ( G4double x)
inline

Definition at line 62 of file G4QMDNucleus.hh.

62{ potentialEnergy = x; };

Referenced by G4QMDReaction::ApplyYourself(), and G4QMDMeanField::SetNucleus().


The documentation for this class was generated from the following files: