Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ICRU73QOModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4ICRU73QOModel
33//
34// Author: Alexander Bagulya
35//
36// Creation date: 21.05.2010
37//
38// Modifications:
39//
40//
41// -------------------------------------------------------------------
42//
43//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
45
46#include "G4ICRU73QOModel.hh"
48#include "G4SystemOfUnits.hh"
49#include "Randomize.hh"
50#include "G4Electron.hh"
52#include "G4LossTableManager.hh"
53#include "G4AntiProton.hh"
54#include "G4DeltaAngle.hh"
55#include "G4Log.hh"
56#include "G4Exp.hh"
57
58//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
59
60using namespace std;
61
62//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
63
65 : G4VEmModel(nam),
66 particle(nullptr),
67 isInitialised(false)
68{
69 mass = charge = chargeSquare = massRate = ratio = 0.0;
70 if(p) { SetParticle(p); }
71 SetHighEnergyLimit(10.0*MeV);
72
73 lowestKinEnergy = 5.0*keV;
74
75 sizeL0 = 67;
76 sizeL1 = 22;
77 sizeL2 = 14;
78
79 theElectron = G4Electron::Electron();
80
81 for (G4int i = 0; i < 100; ++i)
82 {
83 indexZ[i] = -1;
84 }
85 for(G4int i = 0; i < NQOELEM; ++i)
86 {
87 if(ZElementAvailable[i] > 0) {
88 indexZ[ZElementAvailable[i]] = i;
89 }
90 }
91 fParticleChange = nullptr;
92 denEffData = nullptr;
93}
94
95//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
96
98 const G4DataVector&)
99{
100 if(p != particle) SetParticle(p);
101
102 // always false before the run
103 SetDeexcitationFlag(false);
104
105 if(!isInitialised) {
106 isInitialised = true;
107
110 }
111
112 G4String pname = particle->GetParticleName();
113 fParticleChange = GetParticleChangeForLoss();
115 denEffData = (*mtab)[0]->GetIonisation()->GetDensityEffectData();
116 }
117}
118
119//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
120
122 const G4ParticleDefinition* p,
123 G4double kineticEnergy,
124 G4double cut,
125 G4double maxKinEnergy)
126{
127 G4double cross = 0.0;
128 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
129 const G4double maxEnergy = std::min(tmax, maxKinEnergy);
130 const G4double cutEnergy = std::max(cut, lowestKinEnergy*massRate);
131 if(cutEnergy < maxEnergy) {
132
133 const G4double energy = kineticEnergy + mass;
134 const G4double energy2 = energy*energy;
135 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
136 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy)
137 - beta2*G4Log(maxEnergy/cutEnergy)/tmax;
138
139 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2;
140 }
141
142 return cross;
143}
144
145//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
146
148 const G4ParticleDefinition* p,
149 G4double kineticEnergy,
151 G4double cutEnergy,
152 G4double maxEnergy)
153{
155 (p,kineticEnergy,cutEnergy,maxEnergy);
156 return cross;
157}
158
159//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
160
162 const G4Material* material,
163 const G4ParticleDefinition* p,
164 G4double kineticEnergy,
165 G4double cutEnergy,
166 G4double maxEnergy)
167{
168 G4double eDensity = material->GetElectronDensity();
170 (p,kineticEnergy,cutEnergy,maxEnergy);
171 return cross;
172}
173
174//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
175
177 const G4ParticleDefinition* p,
178 G4double kineticEnergy,
179 G4double cut)
180{
181 SetParticle(p);
182 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
183 const G4double tkin = kineticEnergy/massRate;
184 const G4double cutEnergy = std::max(cut, lowestKinEnergy*massRate);
185 G4double dedx = 0.0;
186 if(tkin > lowestKinEnergy) { dedx = DEDX(material, tkin); }
187 else { dedx = DEDX(material, lowestKinEnergy)*sqrt(tkin/lowestKinEnergy); }
188
189 if (cutEnergy < tmax) {
190
191 const G4double tau = kineticEnergy/mass;
192 const G4double x = cutEnergy/tmax;
193 dedx += (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * (tau + 2.0)) + 1.0 - x) *
194 CLHEP::twopi_mc2_rcl2 *chargeSquare * material->GetElectronDensity();
195 }
196 dedx = std::max(dedx, 0.0);
197 return dedx;
198}
199
200//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
201
202G4double G4ICRU73QOModel::DEDX(const G4Material* material,
203 G4double kineticEnergy)
204{
205 G4double eloss = 0.0;
206 const std::size_t numberOfElements = material->GetNumberOfElements();
207 const G4double* theAtomicNumDensityVector =
208 material->GetAtomicNumDensityVector();
209
210 // Bragg's rule calculation
211 const G4ElementVector* theElementVector =
212 material->GetElementVector() ;
213
214 // loop for the elements in the material
215 for (std::size_t i=0; i<numberOfElements; ++i)
216 {
217 const G4Element* element = (*theElementVector)[i] ;
218 eloss += DEDXPerElement(element->GetZasInt(), kineticEnergy)
219 * theAtomicNumDensityVector[i] * element->GetZ();
220 }
221 return eloss;
222}
223
224//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
225
226G4double G4ICRU73QOModel::DEDXPerElement(G4int AtomicNumber,
227 G4double kineticEnergy)
228{
229 G4int Z = std::min(AtomicNumber, 97);
230 G4int nbOfShells = std::max(GetNumberOfShells(Z), 1);
231
232 G4double v = CLHEP::c_light * std::sqrt( 2.0*kineticEnergy/proton_mass_c2 );
233
234 G4double fBetheVelocity = CLHEP::fine_structure_const*CLHEP::c_light/v;
235
236 G4double tau = kineticEnergy/proton_mass_c2;
237 G4double gam = tau + 1.0;
238 G4double bg2 = tau * (tau+2.0);
239 G4double beta2 = bg2/(gam*gam);
240
241 G4double l0Term = 0, l1Term = 0, l2Term = 0;
242
243 for (G4int nos = 0; nos < nbOfShells; ++nos){
244
245 G4double NormalizedEnergy = (2.0*CLHEP::electron_mass_c2*beta2) /
246 GetShellEnergy(Z,nos);
247
248 G4double shStrength = GetShellStrength(Z,nos);
249
250 G4double l0 = GetL0(NormalizedEnergy);
251 l0Term += shStrength * l0;
252
253 G4double l1 = GetL1(NormalizedEnergy);
254 l1Term += shStrength * l1;
255
256 G4double l2 = GetL2(NormalizedEnergy);
257 l2Term += shStrength * l2;
258
259 }
260 G4double dedx = 2*CLHEP::twopi_mc2_rcl2*chargeSquare*factorBethe[Z]*
261 (l0Term + charge*fBetheVelocity*l1Term
262 + chargeSquare*fBetheVelocity*fBetheVelocity*l2Term)/beta2;
263 return dedx;
264}
265
266
267//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
268
269G4double G4ICRU73QOModel::GetOscillatorEnergy(G4int Z,
270 G4int nbOfTheShell) const
271{
272 G4int idx = denEffData->GetElementIndex(Z, kStateUndefined);
273 if(idx == -1) { idx = denEffData->GetElementIndex(Z-1, kStateUndefined); }
274 G4double PlasmaEnergy = denEffData->GetPlasmaEnergy(idx);
275
276 G4double PlasmaEnergy2 = PlasmaEnergy * PlasmaEnergy;
277
278 G4double plasmonTerm = 0.66667
279 * G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell)
280 * PlasmaEnergy2 / (Z*Z) ;
281
282 static const G4double exphalf = G4Exp(0.5);
283 G4double ionTerm = exphalf *
284 (G4AtomicShells::GetBindingEnergy(Z,nbOfTheShell)) ;
285 G4double ionTerm2 = ionTerm*ionTerm ;
286
287 G4double oscShellEnergy = std::sqrt( ionTerm2 + plasmonTerm );
288
289 return oscShellEnergy;
290}
291
292//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
293
294G4int G4ICRU73QOModel::GetNumberOfShells(G4int Z) const
295{
296 G4int nShell = 0;
297
298 if(indexZ[Z] >= 0) {
299 nShell = nbofShellsForElement[indexZ[Z]];
300 } else {
302 }
303 return nShell;
304}
305
306//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
307
308G4double G4ICRU73QOModel::GetShellEnergy(G4int Z, G4int nbOfTheShell) const
309{
310 G4double shellEnergy = 0.;
311
312 G4int idx = indexZ[Z];
313
314 if(idx >= 0) {
315 shellEnergy = ShellEnergy[startElemIndex[idx] + nbOfTheShell]*CLHEP::eV;
316 } else {
317 shellEnergy = GetOscillatorEnergy(Z, nbOfTheShell);
318 }
319
320 return shellEnergy;
321}
322
323//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
324
325G4double G4ICRU73QOModel::GetShellStrength(G4int Z, G4int nbOfTheShell) const
326{
327 G4double shellStrength = 0.;
328
329 G4int idx = indexZ[Z];
330
331 if(idx >= 0) {
332 shellStrength = SubShellOccupation[startElemIndex[idx] + nbOfTheShell] / Z;
333 } else {
334 shellStrength = G4double(G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell))/Z;
335 }
336
337 return shellStrength;
338}
339
340//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
341
342G4double G4ICRU73QOModel::GetL0(G4double normEnergy) const
343{
344 G4int n;
345
346 for(n = 0; n < sizeL0; n++) {
347 if( normEnergy < L0[n][0] ) break;
348 }
349 if(0 == n) { n = 1; }
350 if(n >= sizeL0) { n = sizeL0 - 1; }
351
352 G4double l0 = L0[n][1];
353 G4double l0p = L0[n-1][1];
354 G4double bethe = l0p + (l0 - l0p) * ( normEnergy - L0[n-1][0]) /
355 (L0[n][0] - L0[n-1][0]);
356
357 return bethe ;
358}
359
360//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
361
362G4double G4ICRU73QOModel::GetL1(G4double normEnergy) const
363{
364 G4int n;
365
366 for(n = 0; n < sizeL1; n++) {
367 if( normEnergy < L1[n][0] ) break;
368 }
369 if(0 == n) n = 1 ;
370 if(n >= sizeL1) n = sizeL1 - 1 ;
371
372 G4double l1 = L1[n][1];
373 G4double l1p = L1[n-1][1];
374 G4double barkas= l1p + (l1 - l1p) * ( normEnergy - L1[n-1][0]) /
375 (L1[n][0] - L1[n-1][0]);
376
377 return barkas;
378}
379
380//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
381
382G4double G4ICRU73QOModel::GetL2(G4double normEnergy) const
383{
384 G4int n;
385 for(n = 0; n < sizeL2; n++) {
386 if( normEnergy < L2[n][0] ) break;
387 }
388 if(0 == n) n = 1 ;
389 if(n >= sizeL2) n = sizeL2 - 1 ;
390
391 G4double l2 = L2[n][1];
392 G4double l2p = L2[n-1][1];
393 G4double bloch = l2p + (l2 - l2p) * ( normEnergy - L2[n-1][0]) /
394 (L2[n][0] - L2[n-1][0]);
395
396 return bloch;
397}
398
399//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
400
406
407//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
408
409void G4ICRU73QOModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
410 const G4MaterialCutsCouple* couple,
411 const G4DynamicParticle* dp,
412 G4double minEnergy,
413 G4double maxEnergy)
414{
415 const G4double tmax = MaxSecondaryKinEnergy(dp);
416 const G4double xmax = std::min(tmax, maxEnergy);
417 const G4double xmin = std::max(minEnergy, lowestKinEnergy*massRate);
418 if(xmin >= xmax) { return; }
419
420 G4double kineticEnergy = dp->GetKineticEnergy();
421 const G4double energy = kineticEnergy + mass;
422 const G4double energy2 = energy*energy;
423 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
424 G4double grej = 1.0;
425 G4double deltaKinEnergy, f;
426
427 G4ThreeVector direction = dp->GetMomentumDirection();
428
429 // sampling follows ...
430 do {
432 deltaKinEnergy = xmin*xmax/(xmin*(1.0 - x) + xmax*x);
433
434 f = 1.0 - beta2*deltaKinEnergy/tmax;
435
436 if(f > grej) {
437 G4cout << "G4ICRU73QOModel::SampleSecondary Warning! "
438 << "Majorant " << grej << " < "
439 << f << " for e= " << deltaKinEnergy
440 << G4endl;
441 }
442
443 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
444 } while( grej*G4UniformRand() >= f );
445
446 G4ThreeVector deltaDirection;
447
449 const G4Material* mat = couple->GetMaterial();
451
452 deltaDirection =
453 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat);
454
455 } else {
456
457 G4double deltaMomentum =
458 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
459 G4double totMomentum = energy*sqrt(beta2);
460 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
461 (deltaMomentum * totMomentum);
462 if(cost > 1.0) { cost = 1.0; }
463 G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
464
465 G4double phi = twopi * G4UniformRand() ;
466
467 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ;
468 deltaDirection.rotateUz(direction);
469 }
470 // create G4DynamicParticle object for delta ray
471 auto delta = new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy);
472
473 // Change kinematics of primary particle
474 kineticEnergy -= deltaKinEnergy;
475 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum();
476 finalP = finalP.unit();
477
478 fParticleChange->SetProposedKineticEnergy(kineticEnergy);
479 fParticleChange->SetProposedMomentumDirection(finalP);
480
481 vdp->push_back(delta);
482}
483
484//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
485
487 G4double kinEnergy)
488{
489 if(pd != particle) { SetParticle(pd); }
490 G4double tau = kinEnergy/mass;
491 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) /
492 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio);
493 return tmax;
494}
495
496//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
497
498const G4int G4ICRU73QOModel::ZElementAvailable[NQOELEM] =
499 {1,2,4,6,7,8,10,13,14,-18,
500 22,26,28,29,32,36,42,47,
501 50,54,73,74,78,79,82,92};
502
503const G4int G4ICRU73QOModel::nbofShellsForElement[NQOELEM] =
504 {1,1,2,3,3,3,3,4,5,4,
505 5,5,5,5,6,4,6,6,
506 7,6,6,8,7,7,9,9};
507
508const G4int G4ICRU73QOModel::startElemIndex[NQOELEM] =
509 {0,1,2,4,7,10,13,16,20,25,
510 29,34,39,44,49,55,59,65,
511 71,78,84,90,98,105,112,121};
512
513//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
514
515// SubShellOccupation = Z * ShellStrength
516const G4double G4ICRU73QOModel::SubShellOccupation[NQODATA] =
517 {
518 1.000, // H 0
519 2.000, // He 1
520 1.930, 2.070, // Be 2-3
521 1.992, 1.841, 2.167, // C 4-6
522 1.741, 1.680, 3.579, // N 7-9
523 1.802, 1.849, 4.349, // O 10-12
524 1.788, 2.028, 6.184, // Ne 13-15
525 1.623, 2.147, 6.259, 2.971, // Al 16-19
526 1.631, 2.094, 6.588, 2.041, 1.646, // Si 20-24
527 1.535, 8.655, 1.706, 6.104, // Ar 25-28
528 1.581, 8.358, 8.183, 2.000, 1.878, // Ti 29-33
529 1.516, 8.325, 8.461, 6.579, 1.119, // Fe 34-38
530 1.422, 7.81, 8.385, 8.216, 2.167, // Ni 39-43
531 1.458, 8.049, 8.79, 9.695, 1.008, // Cu 44-48
532 1.442, 7.791, 7.837, 10.122, 2.463, 2.345, // Ge 49-54
533 1.645, 7.765, 19.192, 7.398, // Kr 55-58
534 1.313, 6.409, 19.229, 8.633, 5.036, 1.380, // Mo 59-64
535 1.295, 6.219, 18.751, 8.748, 10.184, 1.803, // Ag 65-70
536 1.277, 6.099, 20.386, 8.011, 10.007, 2.272, 1.948, // Sn 71-77
537 1.563, 6.312, 21.868, 5.762, 11.245, 7.250, // Xe 78-83
538 0.9198, 6.5408, 18.9727, 24.9149, 15.0161, 6.6284, // Ta 84-89
539 1.202, 5.582, 19.527, 18.741, 8.411, 14.387, 4.042, 2.108, // W 90-97
540 1.159, 5.467, 18.802, 33.905, 8.300, 9.342, 1.025, // Pt 98-104
541 1.124, 5.331, 18.078, 34.604, 8.127, 10.414, 1.322, // Au 105-111
542 2.000, 8.000, 18.000, 18.000, 14.000, 8.000, 10.000, 2.000, 2.000, // Pb 112-120
543 2.000, 8.000, 18.000, 32.000, 18.000, 8.000, 2.000, 1.000, 3.000 // U 121-129
544};
545
546//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
547
548// ShellEnergy in eV
549const G4double G4ICRU73QOModel::ShellEnergy[NQODATA] =
550 {
551 19.2, // H
552 41.8, // He
553 209.11, 21.68, // Be
554 486.2, 60.95, 23.43, // C
555 732.61, 100.646, 23.550, // N
556 965.1, 129.85, 31.60, // O
557 1525.9, 234.9, 56.18, // Ne
558 2701, 476.5, 150.42, 16.89, // Al
559 3206.1, 586.4, 186.8, 23.52, 14.91, // Si
560 5551.6, 472.43, 124.85, 22.332, // Ar
561 8554.6, 850.58, 93.47, 39.19, 19.46, // Ti
562 12254.7, 1279.29, 200.35, 49.19, 17.66, // Fe
563 14346.9, 1532.28, 262.71, 74.37, 23.03, // Ni
564 15438.5, 1667.96, 294.1, 70.69, 16.447, // Cu
565 19022.1, 2150.79, 455.79, 179.87, 57.89, 20.95, // Ge
566 24643, 2906.4, 366.85, 22.24, // Kr
567 34394, 4365.3, 589.36, 129.42, 35.59, 18.42, // Mo
568 43664.3, 5824.91, 909.79, 175.47, 54.89, 19.63, // Ag
569 49948, 6818.2, 1036.1, 172.65, 70.89, 33.87, 14.54, // Sn
570 58987, 8159, 1296.6, 356.75, 101.03, 16.52, // Xe
571 88926, 18012, 3210, 575, 108.7, 30.8, // Ta
572 115025.9, 17827.44, 3214.36, 750.41, 305.21, 105.50, 38.09, 21.25, // W
573 128342, 20254, 3601.8, 608.1, 115.0, 42.75, 17.04, // Pt
574 131872, 20903, 3757.4, 682.1, 105.2, 44.89, 17.575, // Au
575 154449, 25067, 5105.0, 987.44, 247.59, 188.1, 40.61, 19.2, 15.17, // Pb
576 167282, 27868, 6022.7, 1020.4, 244.81, 51.33, 13, 11.06, 14.43 // U
577};
578
579//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
580
581// Data for L0 from: Sigmund P., Haagerup U. Phys. Rev. A34 (1986) 892-910
582const G4double G4ICRU73QOModel::L0[67][2] =
583{
584 {0.00, 0.000001},
585 {0.10, 0.000001},
586 {0.12, 0.00001},
587 {0.14, 0.00005},
588 {0.16, 0.00014},
589 {0.18, 0.00030},
590 {0.20, 0.00057},
591 {0.25, 0.00189},
592 {0.30, 0.00429},
593 {0.35, 0.00784},
594 {0.40, 0.01248},
595 {0.45, 0.01811},
596 {0.50, 0.02462},
597 {0.60, 0.03980},
598 {0.70, 0.05731},
599 {0.80, 0.07662},
600 {0.90, 0.09733},
601 {1.00, 0.11916},
602 {1.20, 0.16532},
603 {1.40, 0.21376},
604 {1.60, 0.26362},
605 {1.80, 0.31428},
606 {2.00, 0.36532},
607 {2.50, 0.49272},
608 {3.00, 0.61765},
609 {3.50, 0.73863},
610 {4.00, 0.85496},
611 {4.50, 0.96634},
612 {5.00, 1.07272},
613 {6.00, 1.27086},
614 {7.00, 1.45075},
615 {8.00, 1.61412},
616 {9.00, 1.76277},
617 {10.00, 1.89836},
618 {12.00, 2.13625},
619 {14.00, 2.33787},
620 {16.00, 2.51093},
621 {18.00, 2.66134},
622 {20.00, 2.79358},
623 {25.00, 3.06539},
624 {30.00, 3.27902},
625 {35.00, 3.45430},
626 {40.00, 3.60281},
627 {45.00, 3.73167},
628 {50.00, 3.84555},
629 {60.00, 4.04011},
630 {70.00, 4.20264},
631 {80.00, 4.34229},
632 {90.00, 4.46474},
633 {100.00, 4.57378},
634 {120.00, 4.76155},
635 {140.00, 4.91953},
636 {160.00, 5.05590},
637 {180.00, 5.17588},
638 {200.00, 5.28299},
639 {250.00, 5.50925},
640 {300.00, 5.69364},
641 {350.00, 5.84926},
642 {400.00, 5.98388},
643 {450.00, 6.10252},
644 {500.00, 6.20856},
645 {600.00, 6.39189},
646 {700.00, 6.54677},
647 {800.00, 6.68084},
648 {900.00, 6.79905},
649 {1000.00, 6.90474}
650};
651
652//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
653
654// Data for L1 from: Mikkelsen H.H., Sigmund P. Phys. Rev. A40 (1989) 101-116
655const G4double G4ICRU73QOModel::L1[22][2] =
656{
657 {0.00, -0.000001},
658 {0.10, -0.00001},
659 {0.20, -0.00049},
660 {0.30, -0.00084},
661 {0.40, 0.00085},
662 {0.50, 0.00519},
663 {0.60, 0.01198},
664 {0.70, 0.02074},
665 {0.80, 0.03133},
666 {0.90, 0.04369},
667 {1.00, 0.06035},
668 {2.00, 0.24023},
669 {3.00, 0.44284},
670 {4.00, 0.62012},
671 {5.00, 0.77031},
672 {6.00, 0.90390},
673 {7.00, 1.02705},
674 {8.00, 1.10867},
675 {9.00, 1.17546},
676 {10.00, 1.21599},
677 {15.00, 1.24349},
678 {20.00, 1.16752}
679};
680
681//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
682
683// Data for L2 from: Mikkelsen H.H. Nucl. Instr. Meth. B58 (1991) 136-148
684const G4double G4ICRU73QOModel::L2[14][2] =
685{
686 {0.00, 0.000001},
687 {0.10, 0.00001},
688 {0.20, 0.00000},
689 {0.40, -0.00120},
690 {0.60, -0.00036},
691 {0.80, 0.00372},
692 {1.00, 0.01298},
693 {2.00, 0.08296},
694 {4.00, 0.21953},
695 {6.00, 0.23903},
696 {8.00, 0.20893},
697 {10.00, 0.10879},
698 {20.00, -0.88409},
699 {40.00, -1.13902}
700};
701
702//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
703
704// Correction obtained by V.Ivanchenko using G4BetheBlochModel
705const G4double G4ICRU73QOModel::factorBethe[99] = { 1.0,
7060.9637, 0.9872, 0.9469, 0.9875, 0.91, 0.989, 0.9507, 0.9773, 0.8621, 0.979, // 1 - 10
7070.8357, 0.868, 0.9417, 0.9466, 0.8911, 0.905, 0.944, 0.9607, 0.928, 0.96, // 11 - 20
7080.9098, 0.976, 0.8425, 0.8099, 0.7858, 0.947, 0.7248, 0.9106, 0.9246, 0.6821, // 21 - 30
7090.7223, 0.9784, 0.774, 0.7953, 0.829, 0.9405, 0.8318, 0.8583, 0.8563, 0.8481, // 31 - 40
7100.8207, 0.9033, 0.8063, 0.7837, 0.7818, 0.744, 0.875, 0.7693, 0.7871, 0.8459, // 41 - 50
7110.8231, 0.8462, 0.853, 0.8736, 0.856, 0.8762, 0.8629, 0.8323, 0.8064, 0.7828, // 51 - 60
7120.7533, 0.7273, 0.7093, 0.7157, 0.6823, 0.6612, 0.6418, 0.6395, 0.6323, 0.6221, // 61 - 70
7130.6497, 0.6746, 0.8568, 0.8541, 0.6958, 0.6962, 0.7051, 0.863, 0.8588, 0.7226, // 71 - 80
7140.7454, 0.78, 0.7783, 0.7996, 0.8216, 0.8632, 0.8558, 0.8792, 0.8745, 0.8676, // 81 - 90
7150.8321, 0.8272, 0.7999, 0.7934, 0.7787, 0.7851, 0.7692, 0.7598};
std::vector< const G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double G4Log(G4double x)
Definition G4Log.hh:227
std::vector< G4Material * > G4MaterialTable
@ kStateUndefined
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
Hep3Vector unit() const
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
static G4int GetNumberOfElectrons(G4int Z, G4int SubshellNb)
static G4double GetBindingEnergy(G4int Z, G4int SubshellNb)
static G4int GetNumberOfShells(G4int Z)
G4double GetPlasmaEnergy(G4int idx) const
G4int GetElementIndex(G4int Z, G4State st=kStateUndefined) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
static G4Electron * Electron()
Definition G4Electron.cc:91
G4double GetZ() const
Definition G4Element.hh:119
G4int GetZasInt() const
Definition G4Element.hh:120
G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) final
G4ICRU73QOModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="ICRU73QO")
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
void CorrectionsAlongStep(const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double &length, G4double &eloss) override
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double) override
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
const G4double * GetAtomicNumDensityVector() const
G4double GetElectronDensity() const
static G4MaterialTable * GetMaterialTable()
std::size_t GetNumberOfElements() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
const G4String & GetParticleName() const
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
void SetHighEnergyLimit(G4double)
G4VEmAngularDistribution * GetAngularDistribution()
G4int SelectRandomAtomNumber(const G4Material *) const
void SetDeexcitationFlag(G4bool val)
void SetAngularDistribution(G4VEmAngularDistribution *)
G4bool UseAngularGeneratorFlag() const
G4double MaxSecondaryKinEnergy(const G4DynamicParticle *dynParticle)
G4ParticleChangeForLoss * GetParticleChangeForLoss()