Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Trd.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Implementation for G4Trd class
27//
28// 12.01.95 P.Kent: First version
29// 28.04.05 V.Grichine: new SurfaceNormal according to J.Apostolakis proposal
30// 25.05.17 E.Tcherniaev: complete revision, speed-up
31// --------------------------------------------------------------------
32
33#include "G4Trd.hh"
34
35#if !defined(G4GEOM_USE_UTRD)
36
37#include "G4GeomTools.hh"
38
39#include "G4VoxelLimits.hh"
40#include "G4AffineTransform.hh"
41#include "G4BoundingEnvelope.hh"
42#include "G4QuickRand.hh"
43
45
46#include "G4VGraphicsScene.hh"
47
48using namespace CLHEP;
49
50//////////////////////////////////////////////////////////////////////////
51//
52// Constructor - set & check half widths
53
55 G4double pdx1, G4double pdx2,
56 G4double pdy1, G4double pdy2,
57 G4double pdz)
58 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance),
59 fDx1(pdx1), fDx2(pdx2), fDy1(pdy1), fDy2(pdy2), fDz(pdz)
60{
61 CheckParameters();
62 MakePlanes();
63}
64
65//////////////////////////////////////////////////////////////////////////
66//
67// Fake default constructor - sets only member data and allocates memory
68// for usage restricted to object persistency
69//
70G4Trd::G4Trd( __void__& a )
71 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTolerance),
72 fDx1(1.), fDx2(1.), fDy1(1.), fDy2(1.), fDz(1.)
73{
74 MakePlanes();
75}
76
77//////////////////////////////////////////////////////////////////////////
78//
79// Destructor
80
81G4Trd::~G4Trd() = default;
82
83//////////////////////////////////////////////////////////////////////////
84//
85// Copy constructor
86
88 : G4CSGSolid(rhs), halfCarTolerance(rhs.halfCarTolerance),
89 fDx1(rhs.fDx1), fDx2(rhs.fDx2),
90 fDy1(rhs.fDy1), fDy2(rhs.fDy2), fDz(rhs.fDz),
91 fHx(rhs.fHx), fHy(rhs.fHy)
92{
93 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; }
94}
95
96//////////////////////////////////////////////////////////////////////////
97//
98// Assignment operator
99
101{
102 // Check assignment to self
103 //
104 if (this == &rhs) { return *this; }
105
106 // Copy base class data
107 //
109
110 // Copy data
111 //
112 halfCarTolerance = rhs.halfCarTolerance;
113 fDx1 = rhs.fDx1; fDx2 = rhs.fDx2;
114 fDy1 = rhs.fDy1; fDy2 = rhs.fDy2;
115 fDz = rhs.fDz;
116 fHx = rhs.fHx; fHy = rhs.fHy;
117 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; }
118
119 return *this;
120}
121
122//////////////////////////////////////////////////////////////////////////
123//
124// Set all parameters, as for constructor - set and check half-widths
125
127 G4double pdy1, G4double pdy2, G4double pdz)
128{
129 // Reset data of the base class
130 fCubicVolume = 0.;
131 fSurfaceArea = 0.;
132 fRebuildPolyhedron = true;
133
134 // Set parameters
135 fDx1 = pdx1; fDx2 = pdx2;
136 fDy1 = pdy1; fDy2 = pdy2;
137 fDz = pdz;
138
139 CheckParameters();
140 MakePlanes();
141}
142
143//////////////////////////////////////////////////////////////////////////
144//
145// Check dimensions
146
147void G4Trd::CheckParameters()
148{
149 G4double dmin = 2*kCarTolerance;
150 if ((fDx1 < 0 || fDx2 < 0 || fDy1 < 0 || fDy2 < 0 || fDz < dmin) ||
151 (fDx1 < dmin && fDx2 < dmin) ||
152 (fDy1 < dmin && fDy2 < dmin))
153 {
154 std::ostringstream message;
155 message << "Invalid (too small or negative) dimensions for Solid: "
156 << GetName()
157 << "\n X - " << fDx1 << ", " << fDx2
158 << "\n Y - " << fDy1 << ", " << fDy2
159 << "\n Z - " << fDz;
160 G4Exception("G4Trd::CheckParameters()", "GeomSolids0002",
161 FatalException, message);
162 }
163}
164
165//////////////////////////////////////////////////////////////////////////
166//
167// Set side planes
168
169void G4Trd::MakePlanes()
170{
171 G4double dx = fDx1 - fDx2;
172 G4double dy = fDy1 - fDy2;
173 G4double dz = 2*fDz;
174 fHx = std::sqrt(dy*dy + dz*dz);
175 fHy = std::sqrt(dx*dx + dz*dz);
176
177 // Set X planes at -Y & +Y
178 //
179 fPlanes[0].a = 0.;
180 fPlanes[0].b = -dz/fHx;
181 fPlanes[0].c = dy/fHx;
182 fPlanes[0].d = fPlanes[0].b*fDy1 + fPlanes[0].c*fDz;
183
184 fPlanes[1].a = fPlanes[0].a;
185 fPlanes[1].b = -fPlanes[0].b;
186 fPlanes[1].c = fPlanes[0].c;
187 fPlanes[1].d = fPlanes[0].d;
188
189 // Set Y planes at -X & +X
190 //
191 fPlanes[2].a = -dz/fHy;
192 fPlanes[2].b = 0.;
193 fPlanes[2].c = dx/fHy;
194 fPlanes[2].d = fPlanes[2].a*fDx1 + fPlanes[2].c*fDz;
195
196 fPlanes[3].a = -fPlanes[2].a;
197 fPlanes[3].b = fPlanes[2].b;
198 fPlanes[3].c = fPlanes[2].c;
199 fPlanes[3].d = fPlanes[2].d;
200}
201
202//////////////////////////////////////////////////////////////////////////
203//
204// Get volume
205
207{
208 if (fCubicVolume == 0.)
209 {
210 fCubicVolume = 2*fDz*( (fDx1+fDx2)*(fDy1+fDy2) +
211 (fDx2-fDx1)*(fDy2-fDy1)/3 );
212 }
213 return fCubicVolume;
214}
215
216//////////////////////////////////////////////////////////////////////////
217//
218// Get surface area
219
221{
222 if (fSurfaceArea == 0.)
223 {
225 4*(fDx1*fDy1 + fDx2*fDy2) + 2*(fDx1+fDx2)*fHx + 2*(fDy1+fDy2)*fHy;
226 }
227 return fSurfaceArea;
228}
229
230//////////////////////////////////////////////////////////////////////////
231//
232// Dispatch to parameterisation for replication mechanism dimension
233// computation & modification
234
236 const G4int n,
237 const G4VPhysicalVolume* pRep )
238{
239 p->ComputeDimensions(*this,n,pRep);
240}
241
242//////////////////////////////////////////////////////////////////////////
243//
244// Get bounding box
245
247{
253
254 G4double xmax = std::max(dx1,dx2);
255 G4double ymax = std::max(dy1,dy2);
256 pMin.set(-xmax,-ymax,-dz);
257 pMax.set( xmax, ymax, dz);
258
259 // Check correctness of the bounding box
260 //
261 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
262 {
263 std::ostringstream message;
264 message << "Bad bounding box (min >= max) for solid: "
265 << GetName() << " !"
266 << "\npMin = " << pMin
267 << "\npMax = " << pMax;
268 G4Exception("G4Trd::BoundingLimits()", "GeomMgt0001", JustWarning, message);
269 DumpInfo();
270 }
271}
272
273//////////////////////////////////////////////////////////////////////////
274//
275// Calculate extent under transform and specified limit
276
278 const G4VoxelLimits& pVoxelLimit,
279 const G4AffineTransform& pTransform,
280 G4double& pMin, G4double& pMax ) const
281{
282 G4ThreeVector bmin, bmax;
283 G4bool exist;
284
285 // Check bounding box (bbox)
286 //
287 BoundingLimits(bmin,bmax);
288 G4BoundingEnvelope bbox(bmin,bmax);
289#ifdef G4BBOX_EXTENT
290 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
291#endif
292 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
293 {
294 return exist = pMin < pMax;
295 }
296
297 // Set bounding envelope (benv) and calculate extent
298 //
304
305 G4ThreeVectorList baseA(4), baseB(4);
306 baseA[0].set(-dx1,-dy1,-dz);
307 baseA[1].set( dx1,-dy1,-dz);
308 baseA[2].set( dx1, dy1,-dz);
309 baseA[3].set(-dx1, dy1,-dz);
310 baseB[0].set(-dx2,-dy2, dz);
311 baseB[1].set( dx2,-dy2, dz);
312 baseB[2].set( dx2, dy2, dz);
313 baseB[3].set(-dx2, dy2, dz);
314
315 std::vector<const G4ThreeVectorList *> polygons(2);
316 polygons[0] = &baseA;
317 polygons[1] = &baseB;
318
319 G4BoundingEnvelope benv(bmin,bmax,polygons);
320 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
321 return exist;
322}
323
324//////////////////////////////////////////////////////////////////////////
325//
326// Return whether point inside/outside/on surface, using tolerance
327
329{
330 G4double dx = fPlanes[3].a*std::abs(p.x())+fPlanes[3].c*p.z()+fPlanes[3].d;
331 G4double dy = fPlanes[1].b*std::abs(p.y())+fPlanes[1].c*p.z()+fPlanes[1].d;
332 G4double dxy = std::max(dx,dy);
333
334 G4double dz = std::abs(p.z())-fDz;
335 G4double dist = std::max(dz,dxy);
336
337 return (dist > halfCarTolerance) ? kOutside :
338 ((dist > -halfCarTolerance) ? kSurface : kInside);
339}
340
341//////////////////////////////////////////////////////////////////////////
342//
343// Determine side where point is, and return corresponding normal
344
346{
347 G4int nsurf = 0; // number of surfaces where p is placed
348
349 // Check Z faces
350 //
351 G4double nz = 0;
352 G4double dz = std::abs(p.z()) - fDz;
353 if (std::abs(dz) <= halfCarTolerance)
354 {
355 nz = (p.z() < 0) ? -1 : 1;
356 ++nsurf;
357 }
358
359 // Check Y faces
360 //
361 G4double ny = 0;
362 G4double dy1 = fPlanes[0].b*p.y();
363 G4double dy2 = fPlanes[0].c*p.z() + fPlanes[0].d;
364 if (std::abs(dy2 + dy1) <= halfCarTolerance)
365 {
366 ny += fPlanes[0].b;
367 nz += fPlanes[0].c;
368 ++nsurf;
369 }
370 if (std::abs(dy2 - dy1) <= halfCarTolerance)
371 {
372 ny += fPlanes[1].b;
373 nz += fPlanes[1].c;
374 ++nsurf;
375 }
376
377 // Check X faces
378 //
379 G4double nx = 0;
380 G4double dx1 = fPlanes[2].a*p.x();
381 G4double dx2 = fPlanes[2].c*p.z() + fPlanes[2].d;
382 if (std::abs(dx2 + dx1) <= halfCarTolerance)
383 {
384 nx += fPlanes[2].a;
385 nz += fPlanes[2].c;
386 ++nsurf;
387 }
388 if (std::abs(dx2 - dx1) <= halfCarTolerance)
389 {
390 nx += fPlanes[3].a;
391 nz += fPlanes[3].c;
392 ++nsurf;
393 }
394
395 // Return normal
396 //
397 if (nsurf == 1) return {nx,ny,nz};
398 else if (nsurf != 0) return G4ThreeVector(nx,ny,nz).unit(); // edge or corner
399 else
400 {
401 // Point is not on the surface
402 //
403#ifdef G4CSGDEBUG
404 std::ostringstream message;
405 G4long oldprc = message.precision(16);
406 message << "Point p is not on surface (!?) of solid: "
407 << GetName() << G4endl;
408 message << "Position:\n";
409 message << " p.x() = " << p.x()/mm << " mm\n";
410 message << " p.y() = " << p.y()/mm << " mm\n";
411 message << " p.z() = " << p.z()/mm << " mm";
412 G4cout.precision(oldprc) ;
413 G4Exception("G4Trd::SurfaceNormal(p)", "GeomSolids1002",
414 JustWarning, message );
415 DumpInfo();
416#endif
417 return ApproxSurfaceNormal(p);
418 }
419}
420
421//////////////////////////////////////////////////////////////////////////
422//
423// Algorithm for SurfaceNormal() following the original specification
424// for points not on the surface
425
426G4ThreeVector G4Trd::ApproxSurfaceNormal( const G4ThreeVector& p ) const
427{
428 G4double dist = -DBL_MAX;
429 G4int iside = 0;
430 for (G4int i=0; i<4; ++i)
431 {
432 G4double d = fPlanes[i].a*p.x() +
433 fPlanes[i].b*p.y() +
434 fPlanes[i].c*p.z() + fPlanes[i].d;
435 if (d > dist) { dist = d; iside = i; }
436 }
437
438 G4double distz = std::abs(p.z()) - fDz;
439 if (dist > distz)
440 return { fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c };
441 else
442 return { 0, 0, (G4double)((p.z() < 0) ? -1 : 1) };
443}
444
445//////////////////////////////////////////////////////////////////////////
446//
447// Calculate distance to shape from outside
448// - return kInfinity if no intersection
449
451 const G4ThreeVector& v ) const
452{
453 // Z intersections
454 //
455 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() >= 0)
456 return kInfinity;
457 G4double invz = (-v.z() == 0) ? DBL_MAX : -1./v.z();
458 G4double dz = (invz < 0) ? fDz : -fDz;
459 G4double tzmin = (p.z() + dz)*invz;
460 G4double tzmax = (p.z() - dz)*invz;
461
462 // Y intersections
463 //
464 G4double tmin0 = tzmin, tmax0 = tzmax;
465 G4double ya = fPlanes[0].b*v.y(), yb = fPlanes[0].c*v.z();
466 G4double yc = fPlanes[0].b*p.y(), yd = fPlanes[0].c*p.z()+fPlanes[0].d;
467 G4double cos0 = yb + ya;
468 G4double dis0 = yd + yc;
469 if (dis0 >= -halfCarTolerance)
470 {
471 if (cos0 >= 0) return kInfinity;
472 G4double tmp = -dis0/cos0;
473 if (tmin0 < tmp) tmin0 = tmp;
474 }
475 else if (cos0 > 0)
476 {
477 G4double tmp = -dis0/cos0;
478 if (tmax0 > tmp) tmax0 = tmp;
479 }
480
481 G4double tmin1 = tmin0, tmax1 = tmax0;
482 G4double cos1 = yb - ya;
483 G4double dis1 = yd - yc;
484 if (dis1 >= -halfCarTolerance)
485 {
486 if (cos1 >= 0) return kInfinity;
487 G4double tmp = -dis1/cos1;
488 if (tmin1 < tmp) tmin1 = tmp;
489 }
490 else if (cos1 > 0)
491 {
492 G4double tmp = -dis1/cos1;
493 if (tmax1 > tmp) tmax1 = tmp;
494 }
495
496 // X intersections
497 //
498 G4double tmin2 = tmin1, tmax2 = tmax1;
499 G4double xa = fPlanes[2].a*v.x(), xb = fPlanes[2].c*v.z();
500 G4double xc = fPlanes[2].a*p.x(), xd = fPlanes[2].c*p.z()+fPlanes[2].d;
501 G4double cos2 = xb + xa;
502 G4double dis2 = xd + xc;
503 if (dis2 >= -halfCarTolerance)
504 {
505 if (cos2 >= 0) return kInfinity;
506 G4double tmp = -dis2/cos2;
507 if (tmin2 < tmp) tmin2 = tmp;
508 }
509 else if (cos2 > 0)
510 {
511 G4double tmp = -dis2/cos2;
512 if (tmax2 > tmp) tmax2 = tmp;
513 }
514
515 G4double tmin3 = tmin2, tmax3 = tmax2;
516 G4double cos3 = xb - xa;
517 G4double dis3 = xd - xc;
518 if (dis3 >= -halfCarTolerance)
519 {
520 if (cos3 >= 0) return kInfinity;
521 G4double tmp = -dis3/cos3;
522 if (tmin3 < tmp) tmin3 = tmp;
523 }
524 else if (cos3 > 0)
525 {
526 G4double tmp = -dis3/cos3;
527 if (tmax3 > tmp) tmax3 = tmp;
528 }
529
530 // Find distance
531 //
532 G4double tmin = tmin3, tmax = tmax3;
533 if (tmax <= tmin + halfCarTolerance) return kInfinity; // touch or no hit
534 return (tmin < halfCarTolerance ) ? 0. : tmin;
535}
536
537//////////////////////////////////////////////////////////////////////////
538//
539// Calculate exact shortest distance to any boundary from outside
540// This is the best fast estimation of the shortest distance to trap
541// - returns 0 if point is inside
542
544{
545 G4double dx = fPlanes[3].a*std::abs(p.x())+fPlanes[3].c*p.z()+fPlanes[3].d;
546 G4double dy = fPlanes[1].b*std::abs(p.y())+fPlanes[1].c*p.z()+fPlanes[1].d;
547 G4double dxy = std::max(dx,dy);
548
549 G4double dz = std::abs(p.z())-fDz;
550 G4double dist = std::max(dz,dxy);
551
552 return (dist > 0) ? dist : 0.;
553}
554
555//////////////////////////////////////////////////////////////////////////
556//
557// Calculate distance to surface of shape from inside and
558// find normal at exit point, if required
559// - when leaving the surface, return 0
560
562 const G4bool calcNorm,
563 G4bool* validNorm, G4ThreeVector* n) const
564{
565 // Z intersections
566 //
567 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() > 0)
568 {
569 if (calcNorm)
570 {
571 *validNorm = true;
572 n->set(0, 0, (p.z() < 0) ? -1 : 1);
573 }
574 return 0;
575 }
576 G4double vz = v.z();
577 G4double tmax = (vz == 0) ? DBL_MAX : (std::copysign(fDz,vz) - p.z())/vz;
578 G4int iside = (vz < 0) ? -4 : -2; // little trick: (-4+3)=-1, (-2+3)=+1
579
580 // Y intersections
581 //
582 G4int i = 0;
583 for ( ; i<2; ++i)
584 {
585 G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z();
586 if (cosa > 0)
587 {
588 G4double dist = fPlanes[i].b*p.y()+fPlanes[i].c*p.z()+fPlanes[i].d;
589 if (dist >= -halfCarTolerance)
590 {
591 if (calcNorm)
592 {
593 *validNorm = true;
594 n->set(0, fPlanes[i].b, fPlanes[i].c);
595 }
596 return 0;
597 }
598 G4double tmp = -dist/cosa;
599 if (tmax > tmp) { tmax = tmp; iside = i; }
600 }
601 }
602
603 // X intersections
604 //
605 for ( ; i<4; ++i)
606 {
607 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].c*v.z();
608 if (cosa > 0)
609 {
610 G4double dist = fPlanes[i].a*p.x()+fPlanes[i].c*p.z()+fPlanes[i].d;
611 if (dist >= -halfCarTolerance)
612 {
613 if (calcNorm)
614 {
615 *validNorm = true;
616 n->set(fPlanes[i].a, fPlanes[i].b, fPlanes[i].c);
617 }
618 return 0;
619 }
620 G4double tmp = -dist/cosa;
621 if (tmax > tmp) { tmax = tmp; iside = i; }
622 }
623 }
624
625 // Set normal, if required, and return distance
626 //
627 if (calcNorm)
628 {
629 *validNorm = true;
630 if (iside < 0)
631 n->set(0, 0, iside + 3); // (-4+3)=-1, (-2+3)=+1
632 else
633 n->set(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c);
634 }
635 return tmax;
636}
637
638//////////////////////////////////////////////////////////////////////////
639//
640// Calculate exact shortest distance to any boundary from inside
641// - returns 0 if point is outside
642
644{
645#ifdef G4CSGDEBUG
646 if( Inside(p) == kOutside )
647 {
648 std::ostringstream message;
649 G4long oldprc = message.precision(16);
650 message << "Point p is outside (!?) of solid: " << GetName() << G4endl;
651 message << "Position:\n";
652 message << " p.x() = " << p.x()/mm << " mm\n";
653 message << " p.y() = " << p.y()/mm << " mm\n";
654 message << " p.z() = " << p.z()/mm << " mm";
655 G4cout.precision(oldprc);
656 G4Exception("G4Trd::DistanceToOut(p)", "GeomSolids1002",
657 JustWarning, message );
658 DumpInfo();
659 }
660#endif
661 G4double dx = fPlanes[3].a*std::abs(p.x())+fPlanes[3].c*p.z()+fPlanes[3].d;
662 G4double dy = fPlanes[1].b*std::abs(p.y())+fPlanes[1].c*p.z()+fPlanes[1].d;
663 G4double dxy = std::max(dx,dy);
664
665 G4double dz = std::abs(p.z())-fDz;
666 G4double dist = std::max(dz,dxy);
667
668 return (dist < 0) ? -dist : 0.;
669}
670
671//////////////////////////////////////////////////////////////////////////
672//
673// GetEntityType
674
676{
677 return {"G4Trd"};
678}
679
680//////////////////////////////////////////////////////////////////////////
681//
682// Make a clone of the object
683//
685{
686 return new G4Trd(*this);
687}
688
689//////////////////////////////////////////////////////////////////////////
690//
691// Stream object contents to an output stream
692
693std::ostream& G4Trd::StreamInfo( std::ostream& os ) const
694{
695 G4long oldprc = os.precision(16);
696 os << "-----------------------------------------------------------\n"
697 << " *** Dump for solid - " << GetName() << " ***\n"
698 << " ===================================================\n"
699 << " Solid type: G4Trd\n"
700 << " Parameters: \n"
701 << " half length X, surface -dZ: " << fDx1/mm << " mm \n"
702 << " half length X, surface +dZ: " << fDx2/mm << " mm \n"
703 << " half length Y, surface -dZ: " << fDy1/mm << " mm \n"
704 << " half length Y, surface +dZ: " << fDy2/mm << " mm \n"
705 << " half length Z : " << fDz/mm << " mm \n"
706 << "-----------------------------------------------------------\n";
707 os.precision(oldprc);
708
709 return os;
710}
711
712//////////////////////////////////////////////////////////////////////////
713//
714// Return a point randomly and uniformly selected on the solid surface
715
717{
718 // Set areas
719 //
720 G4double sxz = (fDx1 + fDx2)*fHx;
721 G4double syz = (fDy1 + fDy2)*fHy;
722 G4double ssurf[6] = { 4.*fDx1*fDy1, sxz, sxz, syz, syz, 4.*fDx2*fDy2 };
723 ssurf[1] += ssurf[0];
724 ssurf[2] += ssurf[1];
725 ssurf[3] += ssurf[2];
726 ssurf[4] += ssurf[3];
727 ssurf[5] += ssurf[4];
728
729 // Select face
730 //
731 G4double select = ssurf[5]*G4QuickRand();
732 G4int k = 5;
733 k -= (G4int)(select <= ssurf[4]);
734 k -= (G4int)(select <= ssurf[3]);
735 k -= (G4int)(select <= ssurf[2]);
736 k -= (G4int)(select <= ssurf[1]);
737 k -= (G4int)(select <= ssurf[0]);
738
739 // Generate point on selected surface
740 //
741 G4double u = G4QuickRand();
742 G4double v = G4QuickRand();
743 switch(k)
744 {
745 case 0: // base at -Z
746 {
747 return { (2.*u - 1.)*fDx1, (2.*v - 1.)*fDy1, -fDz };
748 }
749 case 1: // X face at -Y
750 {
751 if (u + v > 1.) { u = 1. - u; v = 1. - v; }
752 G4ThreeVector p0(-fDx1,-fDy1,-fDz);
753 G4ThreeVector p1( fDx2,-fDy2, fDz);
754 return (select <= ssurf[0] + fDx1*fHx) ?
755 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector( fDx1,-fDy1,-fDz) :
756 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector(-fDx2,-fDy2, fDz);
757 }
758 case 2: // X face at +Y
759 {
760 if (u + v > 1.) { u = 1. - u; v = 1. - v; }
761 G4ThreeVector p0( fDx1, fDy1,-fDz);
762 G4ThreeVector p1(-fDx2, fDy2, fDz);
763 return (select <= ssurf[1] + fDx1*fHx) ?
764 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector(-fDx1, fDy1,-fDz) :
765 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector( fDx2, fDy2, fDz);
766 }
767 case 3: // Y face at -X
768 {
769 if (u + v > 1.) { u = 1. - u; v = 1. - v; }
770 G4ThreeVector p0(-fDx1, fDy1,-fDz);
771 G4ThreeVector p1(-fDx2,-fDy2, fDz);
772 return (select <= ssurf[2] + fDy1*fHy) ?
773 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector(-fDx1,-fDy1,-fDz) :
774 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector(-fDx2, fDy2, fDz);
775 }
776 case 4: // Y face at +X
777 {
778 if (u + v > 1.) { u = 1. - u; v = 1. - v; }
779 G4ThreeVector p0( fDx1,-fDy1,-fDz);
780 G4ThreeVector p1( fDx2, fDy2, fDz);
781 return (select <= ssurf[3] + fDy1*fHy) ?
782 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector( fDx1, fDy1,-fDz) :
783 (1. - u - v)*p0 + u*p1 + v*G4ThreeVector( fDx2,-fDy2, fDz);
784 }
785 case 5: // base at +Z
786 {
787 return { (2.*u - 1.)*fDx2, (2.*v - 1.)*fDy2, fDz };
788 }
789 }
790 return {0., 0., 0.};
791}
792
793//////////////////////////////////////////////////////////////////////////
794//
795// Methods for visualisation
796
798{
799 scene.AddSolid (*this);
800}
801
803{
804 return new G4PolyhedronTrd2 (fDx1, fDx2, fDy1, fDy2, fDz);
805}
806
807#endif
const G4double kCarTolerance
std::vector< G4ThreeVector > G4ThreeVectorList
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
G4double G4QuickRand()
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition G4Types.hh:83
long G4long
Definition G4Types.hh:87
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
G4bool BoundingBoxVsVoxelLimits(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
G4double fSurfaceArea
Definition G4CSGSolid.hh:69
G4double fCubicVolume
Definition G4CSGSolid.hh:68
G4bool fRebuildPolyhedron
Definition G4CSGSolid.hh:70
G4CSGSolid & operator=(const G4CSGSolid &rhs)
Definition G4CSGSolid.cc:89
Definition G4Trd.hh:63
void SetAllParameters(G4double pdx1, G4double pdx2, G4double pdy1, G4double pdy2, G4double pdz)
Definition G4Trd.cc:126
G4double GetXHalfLength2() const
std::ostream & StreamInfo(std::ostream &os) const override
Definition G4Trd.cc:693
G4Trd(const G4String &pName, G4double pdx1, G4double pdx2, G4double pdy1, G4double pdy2, G4double pdz)
Definition G4Trd.cc:54
G4double GetSurfaceArea() override
Definition G4Trd.cc:220
G4double b
Definition G4Trd.hh:168
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pMin, G4double &pMax) const override
Definition G4Trd.cc:277
void DescribeYourselfTo(G4VGraphicsScene &scene) const override
Definition G4Trd.cc:797
EInside Inside(const G4ThreeVector &p) const override
Definition G4Trd.cc:328
void BoundingLimits(G4ThreeVector &pMin, G4ThreeVector &pMax) const override
Definition G4Trd.cc:246
G4Trd & operator=(const G4Trd &rhs)
Definition G4Trd.cc:100
G4double GetYHalfLength2() const
~G4Trd() override
G4double a
Definition G4Trd.hh:168
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const override
Definition G4Trd.cc:450
G4Polyhedron * CreatePolyhedron() const override
Definition G4Trd.cc:802
G4double GetXHalfLength1() const
G4double c
Definition G4Trd.hh:168
G4double d
Definition G4Trd.hh:168
G4ThreeVector GetPointOnSurface() const override
Definition G4Trd.cc:716
G4double GetYHalfLength1() const
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const override
Definition G4Trd.cc:561
G4ThreeVector SurfaceNormal(const G4ThreeVector &p) const override
Definition G4Trd.cc:345
G4double GetCubicVolume() override
Definition G4Trd.cc:206
G4GeometryType GetEntityType() const override
Definition G4Trd.cc:675
void ComputeDimensions(G4VPVParameterisation *p, const G4int n, const G4VPhysicalVolume *pRep) override
Definition G4Trd.cc:235
G4double GetZHalfLength() const
G4VSolid * Clone() const override
Definition G4Trd.cc:684
virtual void AddSolid(const G4Box &)=0
virtual void ComputeDimensions(G4Box &, const G4int, const G4VPhysicalVolume *) const
G4String GetName() const
void DumpInfo() const
G4double kCarTolerance
Definition G4VSolid.hh:299
EAxis
Definition geomdefs.hh:54
EInside
Definition geomdefs.hh:67
@ kInside
Definition geomdefs.hh:70
@ kOutside
Definition geomdefs.hh:68
@ kSurface
Definition geomdefs.hh:69
#define DBL_MAX
Definition templates.hh:62