Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QMDCollision.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 080602 Fix memory leaks by T. Koi
27// 081120 Add deltaT in signature of CalKinematicsOfBinaryCollisions
28// Add several required updating of Mean Filed
29// Modified handling of absorption case by T. Koi
30// 090126 Fix in absorption case by T. Koi
31// 090331 Fix for gamma participant by T. Koi
32//
33#include "G4QMDCollision.hh"
34#include "G4Scatterer.hh"
35#include "G4Pow.hh"
36#include "G4Exp.hh"
37#include "G4Log.hh"
39#include "G4SystemOfUnits.hh"
40#include "Randomize.hh"
41
43: fdeltar ( 4.0 )
44, fbcmax0 ( 1.323142 ) // NN maximum impact parameter
45, fbcmax1 ( 2.523 ) // others maximum impact parameter
46// , sig0 ( 55 ) // NN cross section
47//110617 fix for gcc 4.6 compilation warnings
48//, sig1 ( 200 ) // others cross section
49, fepse ( 0.0001 )
50{
51 //These two pointers will be set through SetMeanField method
52 theSystem=NULL;
53 theMeanField=NULL;
54 theScatterer = new G4Scatterer();
55}
56
57/*
58G4QMDCollision::G4QMDCollision( const G4QMDCollision& obj )
59: fdeltar ( obj.fdeltar )
60, fbcmax0 ( obj.fbcmax0 ) // NN maximum impact parameter
61, fbcmax1 ( obj.fbcmax1 ) // others maximum impact parameter
62, fepse ( obj.fepse )
63{
64
65 if ( obj.theSystem != NULL ) {
66 theSystem = new G4QMDSystem;
67 *theSystem = *obj.theSystem;
68 } else {
69 theSystem = NULL;
70 }
71 if ( obj.theMeanField != NULL ) {
72 theMeanField = new G4QMDMeanField;
73 *theMeanField = *obj.theMeanField;
74 } else {
75 theMeanField = NULL;
76 }
77 theScatterer = new G4Scatterer();
78 *theScatterer = *obj.theScatterer;
79}
80
81G4QMDCollision & G4QMDCollision::operator= ( const G4QMDCollision& obj)
82{
83 fdeltar = obj.fdeltar;
84 fbcmax0 = obj.fbcmax1;
85 fepse = obj.fepse;
86
87 if ( obj.theSystem != NULL ) {
88 delete theSystem;
89 theSystem = new G4QMDSystem;
90 *theSystem = *obj.theSystem;
91 } else {
92 theSystem = NULL;
93 }
94 if ( obj.theMeanField != NULL ) {
95 delete theMeanField;
96 theMeanField = new G4QMDMeanField;
97 *theMeanField = *obj.theMeanField;
98 } else {
99 theMeanField = NULL;
100 }
101 delete theScatterer;
102 theScatterer = new G4Scatterer();
103 *theScatterer = *obj.theScatterer;
104
105 return *this;
106}
107*/
108
109
111{
112 //if ( theSystem != NULL ) delete theSystem;
113 //if ( theMeanField != NULL ) delete theMeanField;
114 delete theScatterer;
115}
116
117
119{
120 G4double deltaT = dt;
121
122 G4int n = theSystem->GetTotalNumberOfParticipant();
123//081118
124 //G4int nb = 0;
125 for ( G4int i = 0 ; i < n ; i++ )
126 {
127 theSystem->GetParticipant( i )->UnsetHitMark();
128 theSystem->GetParticipant( i )->UnsetHitMark();
129 //nb += theSystem->GetParticipant( i )->GetBaryonNumber();
130 }
131 //G4cout << "nb = " << nb << " n = " << n << G4endl;
132
133
134//071101
135 for ( G4int i = 0 ; i < n ; i++ )
136 {
137
138 //std::cout << i << " " << theSystem->GetParticipant( i )->GetDefinition()->GetParticleName() << " " << theSystem->GetParticipant( i )->GetPosition() << std::endl;
139
140 if ( theSystem->GetParticipant( i )->GetDefinition()->IsShortLived() )
141 {
142
143 G4bool decayed = false;
144
145 const G4ParticleDefinition* pd0 = theSystem->GetParticipant( i )->GetDefinition();
146 G4ThreeVector p0 = theSystem->GetParticipant( i )->GetMomentum();
147 G4ThreeVector r0 = theSystem->GetParticipant( i )->GetPosition();
148
149 G4LorentzVector p40 = theSystem->GetParticipant( i )->Get4Momentum();
150
151 G4double eini = theMeanField->GetTotalPotential() + p40.e();
152
153 G4int n0 = theSystem->GetTotalNumberOfParticipant();
154 G4int i0 = 0;
155
156 G4bool isThisEnergyOK = false;
157
158 G4int maximumNumberOfTrial=4;
159 for ( G4int ii = 0 ; ii < maximumNumberOfTrial ; ii++ )
160 {
161
162 //G4LorentzVector p4 = theSystem->GetParticipant( i )->Get4Momentum();
163 G4LorentzVector p400 = p40;
164
165 p400 *= GeV;
166 //G4KineticTrack kt( theSystem->GetParticipant( i )->GetDefinition() , 0.0 , (theSystem->GetParticipant( i )->GetPosition())*fermi , p4 );
167 G4KineticTrack kt( pd0 , 0.0 , r0*fermi , p400 );
168 //std::cout << "G4KineticTrack " << i << " " << kt.GetDefinition()->GetParticleName() << kt.GetPosition() << std::endl;
169 G4KineticTrackVector* secs = NULL;
170 secs = kt.Decay();
171 G4int id = 0;
172 G4double et = 0;
173 if ( secs )
174 {
175 for ( G4KineticTrackVector::iterator it
176 = secs->begin() ; it != secs->end() ; it++ )
177 {
178/*
179 G4cout << "G4KineticTrack"
180 << " " << (*it)->GetDefinition()->GetParticleName()
181 << " " << (*it)->Get4Momentum()
182 << " " << (*it)->GetPosition()/fermi
183 << G4endl;
184*/
185 if ( id == 0 )
186 {
187 theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
188 theSystem->GetParticipant( i )->SetMomentum( (*it)->Get4Momentum().v()/GeV );
189 theSystem->GetParticipant( i )->SetPosition( (*it)->GetPosition()/fermi );
190 //theMeanField->Cal2BodyQuantities( i );
191 et += (*it)->Get4Momentum().e()/GeV;
192 }
193 if ( id > 0 )
194 {
195 // Append end;
196 theSystem->SetParticipant ( new G4QMDParticipant ( (*it)->GetDefinition() , (*it)->Get4Momentum().v()/GeV , (*it)->GetPosition()/fermi ) );
197 et += (*it)->Get4Momentum().e()/GeV;
198 if ( id > 1 )
199 {
200 //081118
201 //G4cout << "G4QMDCollision id >2; id= " << id << G4endl;
202 }
203 }
204 id++; // number of daughter particles
205
206 delete *it;
207 }
208
209 theMeanField->Update();
210 i0 = id-1; // 0 enter to i
211
212 delete secs;
213 }
214
215// EnergyCheck
216
217 G4double efin = theMeanField->GetTotalPotential() + et;
218 //std::cout << std::abs ( eini - efin ) - fepse << std::endl;
219// std::cout << std::abs ( eini - efin ) - fepse*10 << std::endl;
220// *10 TK
221 if ( std::abs ( eini - efin ) < fepse*10 )
222 {
223 // Energy OK
224 isThisEnergyOK = true;
225 break;
226 }
227 else
228 {
229
230 theSystem->GetParticipant( i )->SetDefinition( pd0 );
231 theSystem->GetParticipant( i )->SetPosition( r0 );
232 theSystem->GetParticipant( i )->SetMomentum( p0 );
233
234 //for ( G4int i0i = 0 ; i0i < id-1 ; i0i++ )
235 //160210 deletion must be done in descending order
236 for ( G4int i0i = id-2 ; 0 <= i0i ; i0i-- ) {
237 //081118
238 //std::cout << "Decay Energitically Blocked deleteing " << i0i+n0 << std::endl;
239 theSystem->DeleteParticipant( i0i+n0 );
240 }
241 //081103
242 theMeanField->Update();
243 }
244
245 }
246
247
248// Pauli Check
249 if ( isThisEnergyOK == true )
250 {
251 if ( theMeanField->IsPauliBlocked ( i ) != true )
252 {
253
254 G4bool allOK = true;
255 for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
256 {
257 if ( theMeanField->IsPauliBlocked ( i0i+n0 ) == true )
258 {
259 allOK = false;
260 break;
261 }
262 }
263
264 if ( allOK )
265 {
266 decayed = true; //Decay Succeeded
267 }
268 }
269
270 }
271//
272
273 if ( decayed )
274 {
275 //081119
276 //G4cout << "Decay Suceeded! " << std::endl;
277 theSystem->GetParticipant( i )->SetHitMark();
278 for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
279 {
280 theSystem->GetParticipant( i0i+n0 )->SetHitMark();
281 }
282
283 }
284 else
285 {
286
287// Decay Blocked and re-enter orginal participant;
288
289 if ( isThisEnergyOK == true ) // for false case already done
290 {
291
292 theSystem->GetParticipant( i )->SetDefinition( pd0 );
293 theSystem->GetParticipant( i )->SetPosition( r0 );
294 theSystem->GetParticipant( i )->SetMomentum( p0 );
295
296 for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
297 {
298 //081118
299 //std::cout << "Decay Blocked deleteing " << i0i+n0 << std::endl;
300 //160210 adding commnet: deletion must be done in descending order
301 theSystem->DeleteParticipant( i0+n0-i0i-1 );
302 }
303 //081103
304 theMeanField->Update();
305 }
306
307 }
308
309 } //shortlive
310 } // go next participant
311//071101
312
313
314 n = theSystem->GetTotalNumberOfParticipant();
315
316//081118
317 //for ( G4int i = 1 ; i < n ; i++ )
318 for ( G4int i = 1 ; i < theSystem->GetTotalNumberOfParticipant() ; i++ )
319 {
320
321 //std::cout << "Collision i " << i << std::endl;
322 if ( theSystem->GetParticipant( i )->IsThisHit() ) continue;
323
324 G4ThreeVector ri = theSystem->GetParticipant( i )->GetPosition();
325 G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum();
326 G4double rmi = theSystem->GetParticipant( i )->GetMass();
327 const G4ParticleDefinition* pdi = theSystem->GetParticipant( i )->GetDefinition();
328//090331 gamma
329 if ( pdi->GetPDGMass() == 0.0 ) continue;
330
331 //std::cout << " p4i00 " << p4i << std::endl;
332 for ( G4int j = 0 ; j < i ; j++ )
333 {
334
335
336/*
337 G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisProjectile() << G4endl;
338 G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisProjectile() << G4endl;
339 G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisTarget() << G4endl;
340 G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisTarget() << G4endl;
341*/
342
343 // Only 1 Collision allowed for each particle in a time step.
344 //081119
345 if ( theSystem->GetParticipant( i )->IsThisHit() ) continue;
346 if ( theSystem->GetParticipant( j )->IsThisHit() ) continue;
347
348 //std::cout << "Collision " << i << " " << j << std::endl;
349
350 // Do not allow collision between nucleons in target/projectile til its first collision.
351 if ( theSystem->GetParticipant( i )->IsThisProjectile() )
352 {
353 if ( theSystem->GetParticipant( j )->IsThisProjectile() ) continue;
354 }
355 else if ( theSystem->GetParticipant( i )->IsThisTarget() )
356 {
357 if ( theSystem->GetParticipant( j )->IsThisTarget() ) continue;
358 }
359
360
361 G4ThreeVector rj = theSystem->GetParticipant( j )->GetPosition();
362 G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum();
363 G4double rmj = theSystem->GetParticipant( j )->GetMass();
364 const G4ParticleDefinition* pdj = theSystem->GetParticipant( j )->GetDefinition();
365//090331 gamma
366 if ( pdj->GetPDGMass() == 0.0 ) continue;
367
368 G4double rr2 = theMeanField->GetRR2( i , j );
369
370// Here we assume elab (beam momentum less than 5 GeV/n )
371 if ( rr2 > fdeltar*fdeltar ) continue;
372
373 //G4double s = (p4i+p4j)*(p4i+p4j);
374 //G4double srt = std::sqrt ( s );
375
376 G4double srt = std::sqrt( (p4i+p4j)*(p4i+p4j) );
377
378 G4double cutoff = 0.0;
379 G4double fbcmax = 0.0;
380 //110617 fix for gcc 4.6 compilation warnings
381 //G4double sig = 0.0;
382
383 if ( rmi < 0.94 && rmj < 0.94 )
384 {
385// nucleon or pion case
386 cutoff = rmi + rmj + 0.02;
387 fbcmax = fbcmax0;
388 //110617 fix for gcc 4.6 compilation warnings
389 //sig = sig0;
390 }
391 else
392 {
393 cutoff = rmi + rmj;
394 fbcmax = fbcmax1;
395 //110617 fix for gcc compilation warnings
396 //sig = sig1;
397 }
398
399 //std::cout << "Collision cutoff " << i << " " << j << " " << cutoff << std::endl;
400 if ( srt < cutoff ) continue;
401
402 G4ThreeVector dr = ri - rj;
403 G4double rsq = dr*dr;
404
405 G4double pij = p4i*p4j;
406 G4double pidr = p4i.vect()*dr;
407 G4double pjdr = p4j.vect()*dr;
408
409 G4double aij = 1.0 - ( rmi*rmj /pij ) * ( rmi*rmj /pij );
410 G4double bij = pidr / rmi - pjdr*rmi/pij;
411 G4double cij = rsq + ( pidr / rmi ) * ( pidr / rmi );
412 G4double brel = std::sqrt ( std::abs ( cij - bij*bij/aij ) );
413
414 if ( brel > fbcmax ) continue;
415 //std::cout << "collisions3 " << std::endl;
416
417 G4double bji = -pjdr/rmj + pidr * rmj /pij;
418
419 G4double ti = ( pidr/rmi - bij / aij ) * p4i.e() / rmi;
420 G4double tj = (-pjdr/rmj - bji / aij ) * p4j.e() / rmj;
421
422
423/*
424 G4cout << "collisions4 p4i " << p4i << G4endl;
425 G4cout << "collisions4 ri " << ri << G4endl;
426 G4cout << "collisions4 p4j " << p4j << G4endl;
427 G4cout << "collisions4 rj " << rj << G4endl;
428 G4cout << "collisions4 dr " << dr << G4endl;
429 G4cout << "collisions4 pij " << pij << G4endl;
430 G4cout << "collisions4 aij " << aij << G4endl;
431 G4cout << "collisions4 bij bji " << bij << " " << bji << G4endl;
432 G4cout << "collisions4 pidr pjdr " << pidr << " " << pjdr << G4endl;
433 G4cout << "collisions4 p4i.e() p4j.e() " << p4i.e() << " " << p4j.e() << G4endl;
434 G4cout << "collisions4 rmi rmj " << rmi << " " << rmj << G4endl;
435 G4cout << "collisions4 " << ti << " " << tj << G4endl;
436*/
437 if ( std::abs ( ti + tj ) > deltaT ) continue;
438 //std::cout << "collisions4 " << std::endl;
439
440 G4ThreeVector beta = ( p4i + p4j ).boostVector();
441
442 G4LorentzVector p = p4i;
443 G4LorentzVector p4icm = p.boost( p.findBoostToCM ( p4j ) );
444 G4ThreeVector pcm = p4icm.vect();
445
446 G4double prcm = pcm.mag();
447
448 if ( prcm <= 0.00001 ) continue;
449 //std::cout << "collisions5 " << std::endl;
450
451 G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollision ( i , j ) ); // Use Geant4 Collision Library
452 //G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollisionJQMD ( sig , cutoff , pcm , prcm , srt, beta , gamma , i , j ) ); // JQMD Elastic
453
454/*
455 G4bool pauli_blocked = false;
456 if ( energetically_forbidden == false ) // result true
457 {
458 if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true )
459 {
460 pauli_blocked = true;
461 //std::cout << "G4QMDRESULT Collsion Pauli Blocked " << std::endl;
462 }
463 }
464 else
465 {
466 if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true )
467 pauli_blocked = false;
468 //std::cout << "G4QMDRESULT Collsion Blocked " << std::endl;
469 }
470*/
471
472/*
473 G4cout << "G4QMDRESULT Collsion initial p4 i and j "
474 << p4i << " " << p4j
475 << G4endl;
476*/
477// 081118
478 //if ( energetically_forbidden == true || pauli_blocked == true )
479 if ( energetically_forbidden == true )
480 {
481
482 //G4cout << " energetically_forbidden " << G4endl;
483// Collsion not allowed then re enter orginal participants
484// Now only momentum, becasuse we only consider elastic scattering of nucleons
485
486 theSystem->GetParticipant( i )->SetMomentum( p4i.vect() );
487 theSystem->GetParticipant( i )->SetDefinition( pdi );
488 theSystem->GetParticipant( i )->SetPosition( ri );
489
490 theSystem->GetParticipant( j )->SetMomentum( p4j.vect() );
491 theSystem->GetParticipant( j )->SetDefinition( pdj );
492 theSystem->GetParticipant( j )->SetPosition( rj );
493
494 theMeanField->Cal2BodyQuantities( i );
495 theMeanField->Cal2BodyQuantities( j );
496
497 }
498 else
499 {
500
501
502 G4bool absorption = false;
503 if ( n == theSystem->GetTotalNumberOfParticipant()+1 ) absorption = true;
504 if ( absorption )
505 {
506 //G4cout << "Absorption happend " << G4endl;
507 i = i-1;
508 n = n-1;
509 }
510
511// Collsion allowed (really happened)
512
513 // Unset Projectile/Target flag
514 theSystem->GetParticipant( i )->UnsetInitialMark();
515 if ( !absorption ) theSystem->GetParticipant( j )->UnsetInitialMark();
516
517 theSystem->GetParticipant( i )->SetHitMark();
518 if ( !absorption ) theSystem->GetParticipant( j )->SetHitMark();
519
520 theSystem->IncrementCollisionCounter();
521
522/*
523 G4cout << "G4QMDRESULT Collsion Really Happened between "
524 << i << " and " << j
525 << G4endl;
526 G4cout << "G4QMDRESULT Collsion initial p4 i and j "
527 << p4i << " " << p4j
528 << G4endl;
529 G4cout << "G4QMDRESULT Collsion after p4 i and j "
530 << theSystem->GetParticipant( i )->Get4Momentum()
531 << " "
532 << theSystem->GetParticipant( j )->Get4Momentum()
533 << G4endl;
534 G4cout << "G4QMDRESULT Collsion Diff "
535 << p4i + p4j - theSystem->GetParticipant( i )->Get4Momentum() - theSystem->GetParticipant( j )->Get4Momentum()
536 << G4endl;
537 G4cout << "G4QMDRESULT Collsion initial r i and j "
538 << ri << " " << rj
539 << G4endl;
540 G4cout << "G4QMDRESULT Collsion after r i and j "
541 << theSystem->GetParticipant( i )->GetPosition()
542 << " "
543 << theSystem->GetParticipant( j )->GetPosition()
544 << G4endl;
545*/
546
547
548 }
549
550 }
551
552 }
553
554
555}
556
557
558
560{
561
562//081103
563 //G4cout << "CalFinalStateOfTheBinaryCollision " << i << " " << j << " " << theSystem->GetTotalNumberOfParticipant() << G4endl;
564
565 G4bool result = false;
566 G4bool energyOK = false;
567 G4bool pauliOK = false;
568 G4bool abs = false;
569 G4QMDParticipant* absorbed = NULL;
570
571 G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum();
572 G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum();
573
574//071031
575
576 G4double epot = theMeanField->GetTotalPotential();
577
578 G4double eini = epot + p4i.e() + p4j.e();
579
580//071031
581 // will use KineticTrack
582 const G4ParticleDefinition* pdi0 =theSystem->GetParticipant( i )->GetDefinition();
583 const G4ParticleDefinition* pdj0 =theSystem->GetParticipant( j )->GetDefinition();
584 G4LorentzVector p4i0 = p4i*GeV;
585 G4LorentzVector p4j0 = p4j*GeV;
586 G4ThreeVector ri0 = ( theSystem->GetParticipant( i )->GetPosition() )*fermi;
587 G4ThreeVector rj0 = ( theSystem->GetParticipant( j )->GetPosition() )*fermi;
588
589 for ( G4int iitry = 0 ; iitry < 4 ; iitry++ )
590 {
591
592 abs = false;
593
594 G4KineticTrack kt1( pdi0 , 0.0 , ri0 , p4i0 );
595 G4KineticTrack kt2( pdj0 , 0.0 , rj0 , p4j0 );
596
597 G4LorentzVector p4ix_new;
598 G4LorentzVector p4jx_new;
599 G4KineticTrackVector* secs = NULL;
600 secs = theScatterer->Scatter( kt1 , kt2 );
601
602 //std::cout << "G4QMDSCATTERER BEFORE " << kt1.GetDefinition()->GetParticleName() << " " << kt1.Get4Momentum()/GeV << " " << kt1.GetPosition()/fermi << std::endl;
603 //std::cout << "G4QMDSCATTERER BEFORE " << kt2.GetDefinition()->GetParticleName() << " " << kt2.Get4Momentum()/GeV << " " << kt2.GetPosition()/fermi << std::endl;
604 //std::cout << "THESCATTERER " << theScatterer->GetCrossSection ( kt1 , kt2 )/millibarn << " " << elastic << " " << sig << std::endl;
605
606
607 if ( secs )
608 {
609 G4int iti = 0;
610 if ( secs->size() == 2 )
611 {
612 for ( G4KineticTrackVector::iterator it
613 = secs->begin() ; it != secs->end() ; it++ )
614 {
615 if ( iti == 0 )
616 {
617 theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
618 p4ix_new = (*it)->Get4Momentum()/GeV;
619 //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl;
620 theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
621 }
622 if ( iti == 1 )
623 {
624 theSystem->GetParticipant( j )->SetDefinition( (*it)->GetDefinition() );
625 p4jx_new = (*it)->Get4Momentum()/GeV;
626 //std::cout << "THESCATTERER " << p4jx_new.e()-p4jx_new.m() << std::endl;
627 theSystem->GetParticipant( j )->SetMomentum( p4jx_new.v() );
628 }
629 //std::cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << std::endl;
630 iti++;
631 }
632 }
633 else if ( secs->size() == 1 )
634 {
635//081118
636 abs = true;
637 //G4cout << "G4QMDCollision pion absrorption " << secs->front()->GetDefinition()->GetParticleName() << G4endl;
638 //secs->front()->Decay();
639 theSystem->GetParticipant( i )->SetDefinition( secs->front()->GetDefinition() );
640 p4ix_new = secs->front()->Get4Momentum()/GeV;
641 theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
642
643 }
644
645//081118
646 if ( secs->size() > 2 )
647 {
648
649 G4cout << "G4QMDCollision secs size > 2; " << secs->size() << G4endl;
650
651 for ( G4KineticTrackVector::iterator it
652 = secs->begin() ; it != secs->end() ; it++ )
653 {
654 G4cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << G4endl;
655 }
656
657 }
658
659 // deleteing KineticTrack
660 for ( G4KineticTrackVector::iterator it
661 = secs->begin() ; it != secs->end() ; it++ )
662 {
663 delete *it;
664 }
665
666 delete secs;
667 }
668//071031
669
670 if ( !abs )
671 {
672 theMeanField->Cal2BodyQuantities( i );
673 theMeanField->Cal2BodyQuantities( j );
674 }
675 else
676 {
677 absorbed = theSystem->EraseParticipant( j );
678 theMeanField->Update();
679 }
680
681 epot = theMeanField->GetTotalPotential();
682
683 G4double efin = epot + p4ix_new.e() + p4jx_new.e();
684
685 //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
686
687/*
688 G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
689 G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
690 G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
691*/
692
693//071031
694 if ( std::abs ( eini - efin ) < fepse )
695 {
696 // Collison OK
697 //std::cout << "collisions6" << std::endl;
698 //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
699 //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
700 //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
701 //std::cout << "collisions before " << ri0/fermi << " " << rj0/fermi << std::endl;
702 //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
703 energyOK = true;
704 break;
705 }
706 else
707 {
708 //G4cout << "Energy Not OK " << G4endl;
709 if ( abs )
710 {
711 //G4cout << "TKDB reinsert j " << G4endl;
712 theSystem->InsertParticipant( absorbed , j );
713 theMeanField->Update();
714 }
715 // do not need reinsert in no absroption case
716 }
717//071031
718 }
719
720// Energetically forbidden collision
721
722 if ( energyOK )
723 {
724 // Pauli Check
725 //G4cout << "Pauli Checking " << theSystem->GetTotalNumberOfParticipant() << G4endl;
726 if ( !abs )
727 {
728 if ( !( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) )
729 {
730 //G4cout << "Binary Collision Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
731 pauliOK = true;
732 }
733 }
734 else
735 {
736 //if ( theMeanField->IsPauliBlocked ( i ) == false )
737 //090126 i-1 cause jth is erased
738 if ( theMeanField->IsPauliBlocked ( i-1 ) == false )
739 {
740 //G4cout << "Absorption Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
741 delete absorbed;
742 pauliOK = true;
743 }
744 }
745
746
747 if ( pauliOK )
748 {
749 result = true;
750 }
751 else
752 {
753 //G4cout << "Pauli Blocked" << G4endl;
754 if ( abs )
755 {
756 //G4cout << "TKDB reinsert j pauli block" << G4endl;
757 theSystem->InsertParticipant( absorbed , j );
758 theMeanField->Update();
759 }
760 }
761 }
762
763 return result;
764
765}
766
767
768
770{
771
772 //G4cout << "CalFinalStateOfTheBinaryCollisionJQMD" << G4endl;
773
774 G4bool result = true;
775
776 G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum();
777 G4double rmi = theSystem->GetParticipant( i )->GetMass();
778 G4int zi = theSystem->GetParticipant( i )->GetChargeInUnitOfEplus();
779
780 G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum();
781 G4double rmj = theSystem->GetParticipant( j )->GetMass();
782 G4int zj = theSystem->GetParticipant( j )->GetChargeInUnitOfEplus();
783
784 G4double pr = prcm;
785
786 G4double c2 = pcm.z()/pr;
787
788 G4double csrt = srt - cutoff;
789
790 //G4double pri = prcm;
791 //G4double prf = sqrt ( 0.25 * srt*srt -rm2 );
792
793 G4double asrt = srt - rmi - rmj;
794 G4double pra = prcm;
795
796
797
798 G4double elastic = 0.0;
799
800 if ( zi == zj )
801 {
802 if ( csrt < 0.4286 )
803 {
804 elastic = 35.0 / ( 1. + csrt * 100.0 ) + 20.0;
805 }
806 else
807 {
808 elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
809 * 2. / pi + 1.0 ) * 9.65 + 7.0;
810 }
811 }
812 else
813 {
814 if ( csrt < 0.4286 )
815 {
816 elastic = 28.0 / ( 1. + csrt * 100.0 ) + 27.0;
817 }
818 else
819 {
820 elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
821 * 2. / pi + 1.0 ) * 12.34 + 10.0;
822 }
823 }
824
825// std::cout << "Collision csrt " << i << " " << j << " " << csrt << std::endl;
826// std::cout << "Collision elstic " << i << " " << j << " " << elastic << std::endl;
827
828
829// std::cout << "Collision sig " << i << " " << j << " " << sig << std::endl;
830 if ( G4UniformRand() > elastic / sig )
831 {
832 //std::cout << "Inelastic " << std::endl;
833 //std::cout << "elastic/sig " << elastic/sig << std::endl;
834 return result;
835 }
836 else
837 {
838 //std::cout << "Elastic " << std::endl;
839 }
840// std::cout << "Collision ELSTIC " << i << " " << j << std::endl;
841
842
843 G4double as = G4Pow::GetInstance()->powN ( 3.65 * asrt , 6 );
844 G4double a = 6.0 * as / (1.0 + as);
845 G4double ta = -2.0 * pra*pra;
846 G4double x = G4UniformRand();
847 G4double t1 = G4Log( (1-x) * G4Exp(2.*a*ta) + x ) / a;
848 G4double c1 = 1.0 - t1/ta;
849
850 if( std::abs(c1) > 1.0 ) c1 = 2.0 * x - 1.0;
851
852/*
853 G4cout << "Collision as " << i << " " << j << " " << as << G4endl;
854 G4cout << "Collision a " << i << " " << j << " " << a << G4endl;
855 G4cout << "Collision ta " << i << " " << j << " " << ta << G4endl;
856 G4cout << "Collision x " << i << " " << j << " " << x << G4endl;
857 G4cout << "Collision t1 " << i << " " << j << " " << t1 << G4endl;
858 G4cout << "Collision c1 " << i << " " << j << " " << c1 << G4endl;
859*/
860 t1 = 2.0*pi*G4UniformRand();
861// std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl;
862 G4double t2 = 0.0;
863 if ( pcm.x() == 0.0 && pcm.y() == 0 )
864 {
865 t2 = 0.0;
866 }
867 else
868 {
869 t2 = std::atan2( pcm.y() , pcm.x() );
870 }
871// std::cout << "Collision t2 " << i << " " << j << " " << t2 << std::endl;
872
873 G4double s1 = std::sqrt ( 1.0 - c1*c1 );
874 G4double s2 = std::sqrt ( 1.0 - c2*c2 );
875
876 G4double ct1 = std::cos(t1);
877 G4double st1 = std::sin(t1);
878
879 G4double ct2 = std::cos(t2);
880 G4double st2 = std::sin(t2);
881
882 G4double ss = c2*s1*ct1 + s2*c1;
883
884 pcm.setX( pr * ( ss*ct2 - s1*st1*st2) );
885 pcm.setY( pr * ( ss*st2 + s1*st1*ct2) );
886 pcm.setZ( pr * ( c1*c2 - s1*s2*ct1) );
887
888// std::cout << "Collision pcm " << i << " " << j << " " << pcm << std::endl;
889
890 G4double epot = theMeanField->GetTotalPotential();
891
892 G4double eini = epot + p4i.e() + p4j.e();
893 G4double etwo = p4i.e() + p4j.e();
894
895/*
896 G4cout << "Collision epot " << i << " " << j << " " << epot << G4endl;
897 G4cout << "Collision eini " << i << " " << j << " " << eini << G4endl;
898 G4cout << "Collision etwo " << i << " " << j << " " << etwo << G4endl;
899*/
900
901
902 for ( G4int itry = 0 ; itry < 4 ; itry++ )
903 {
904
905 G4double eicm = std::sqrt ( rmi*rmi + pcm*pcm );
906 G4double pibeta = pcm*beta;
907
908 G4double trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + eicm );
909
910 G4ThreeVector pi_new = beta*trans + pcm;
911
912 G4double ejcm = std::sqrt ( rmj*rmj + pcm*pcm );
913 trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + ejcm );
914
915 G4ThreeVector pj_new = beta*trans - pcm;
916
917//
918// Delete old
919// Add new Particitipants
920//
921// Now only change momentum ( Beacuse we only have elastic sctter of nucleon
922// In future Definition also will be change
923//
924
925 theSystem->GetParticipant( i )->SetMomentum( pi_new );
926 theSystem->GetParticipant( j )->SetMomentum( pj_new );
927
928 G4double pi_new_e = (theSystem->GetParticipant( i )->Get4Momentum()).e();
929 G4double pj_new_e = (theSystem->GetParticipant( j )->Get4Momentum()).e();
930
931 theMeanField->Cal2BodyQuantities( i );
932 theMeanField->Cal2BodyQuantities( j );
933
934 epot = theMeanField->GetTotalPotential();
935
936 G4double efin = epot + pi_new_e + pj_new_e ;
937
938 //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
939/*
940 G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
941 G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
942 G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
943*/
944
945//071031
946 if ( std::abs ( eini - efin ) < fepse )
947 {
948 // Collison OK
949 //std::cout << "collisions6" << std::endl;
950 //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
951 //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
952 //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
953 //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl;
954 //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
955 }
956//071031
957
958 if ( std::abs ( eini - efin ) < fepse ) return result; // Collison OK
959
960 G4double cona = ( eini - efin + etwo ) / gamma;
961 G4double fac2 = 1.0 / ( 4.0 * cona*cona * pr*pr ) *
962 ( ( cona*cona - ( rmi*rmi + rmj*rmj ) )*( cona*cona - ( rmi*rmi + rmj*rmj ) )
963 - 4.0 * rmi*rmi * rmj*rmj );
964
965 if ( fac2 > 0 )
966 {
967 G4double fact = std::sqrt ( fac2 );
968 pcm = fact*pcm;
969 }
970
971
972 }
973
974// Energetically forbidden collision
975 result = false;
976
977 return result;
978
979}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double G4Log(G4double x)
Definition G4Log.hh:227
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
double z() const
double x() const
void setY(double)
double y() const
void setZ(double)
double mag() const
void setX(double)
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
Hep3Vector v() const
Hep3Vector findBoostToCM() const
G4KineticTrackVector * Decay()
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powN(G4double x, G4int n) const
Definition G4Pow.cc:162
G4bool CalFinalStateOfTheBinaryCollisionJQMD(G4double, G4double, G4ThreeVector, G4double, G4double, G4ThreeVector, G4double, G4int, G4int)
void CalKinematicsOfBinaryCollisions(G4double)
G4bool CalFinalStateOfTheBinaryCollision(G4int, G4int)
G4double GetTotalPotential()
G4double GetRR2(G4int i, G4int j)
G4bool IsPauliBlocked(G4int)
G4ThreeVector GetPosition()
const G4ParticleDefinition * GetDefinition()
void SetPosition(G4ThreeVector r)
G4LorentzVector Get4Momentum()
void SetDefinition(const G4ParticleDefinition *pd)
G4ThreeVector GetMomentum()
void SetMomentum(G4ThreeVector p)
void InsertParticipant(G4QMDParticipant *particle, G4int j)
G4QMDParticipant * GetParticipant(G4int i)
G4int GetTotalNumberOfParticipant()
void DeleteParticipant(G4int i)
void SetParticipant(G4QMDParticipant *particle)
void IncrementCollisionCounter()
G4QMDParticipant * EraseParticipant(G4int i)
virtual G4KineticTrackVector * Scatter(const G4KineticTrack &trk1, const G4KineticTrack &trk2) const