58const G4int G4MuonVDNuclearModel::zdat[] = {1, 4, 13, 29, 92};
59const G4double G4MuonVDNuclearModel::adat[] = {1.01,9.01,26.98,63.55,238.03};
60const G4double G4MuonVDNuclearModel::tdat[] = {
61 1.e3,2.e3,3.e3,4.e3,5.e3,6.e3,7.e3,8.e3,9.e3,
62 1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4,
63 1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5,
64 1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6,
65 1.e7,2.e7,3.e7,4.e7,5.e7,6.e7,7.e7,8.e7,9.e7,
66 1.e8,2.e8,3.e8,4.e8,5.e8,6.e8,7.e8,8.e8,9.e8,
67 1.e9,2.e9,3.e9,4.e9,5.e9,6.e9,7.e9,8.e9,9.e9,
68 1.e10,2.e10,3.e10,4.e10,5.e10,6.e10,7.e10,8.e10,9.e10,1.e11};
80 CutFixed = 0.2*CLHEP::GeV;
115 delete theFragmentation;
116 delete theStringDecay;
120 fElementData =
nullptr;
132 if (epmax <= CutFixed) {
143 CalculateHadronicVertex(transferredPhoton, targetNucleus);
159 G4double epmax = TotalEnergy - 0.5*proton_mass_c2;
167 for (
G4int iz = 0; iz < nzdat; ++iz) {
168 del = std::abs(lnZ - g4calc->
logZ(zdat[iz]));
176 for (
G4int it = 0; it < ntdat; ++it) {
177 del = std::abs(
G4Log(KineticEnergy)-
G4Log(tdat[it]) );
191 for(iy = 0; iy<NBIN; ++iy) {
194 if(pvv >= r) {
break; }
207 G4double tmin = Mass*Mass*yy*yy/(1.-yy);
208 G4double tmax = 2.*proton_mass_c2*ep;
221 G4double w3 = tmax*(tmin+t1)/(tmin*w2);
236 eda <<
" While count exceeded " <<
G4endl;
242 rej = (1.-t/tmax)*(y1*(1.-tmin/t)+y2)/(y3*(1.-t/t2));
247 0.5*(t-tmin)/(2.*(TotalEnergy*(TotalEnergy-ep)-Mass*Mass)-tmin);
248 G4double theta = std::acos(1. - 2.*sinth2);
252 G4double dirx = sinth*std::cos(phi);
253 G4double diry = sinth*std::sin(phi);
257 finalDirection.rotateUz(ParticleDirection);
260 G4double finalMomentum = std::sqrt(NewKinEnergy*(NewKinEnergy+2.*Mass) );
262 G4double initMomentum = std::sqrt(KineticEnergy*(TotalEnergy+Mass) );
270 G4LorentzVector primaryMomentum(initMomentum*ParticleDirection, TotalEnergy);
287 if (gammaE < 10*GeV) {
294 G4double piMom = std::sqrt(piKE*(piKE + 2*piMass) );
314void G4MuonVDNuclearModel::MakeSamplingTable()
334 for (
G4int iz = 0; iz < nzdat; ++iz) {
335 AtomicNumber = zdat[iz];
336 AtomicWeight = adat[iz]*(g/mole);
341 for (
G4int it = 0; it < ntdat; ++it) {
344 Maxep = TotalEnergy - 0.5*proton_mass_c2;
350 c =
G4Log(Maxep/CutFixed);
353 dy = (ymax-ymin)/NBIN;
359 for (
G4int i = 0; i < NBIN; ++i) {
365 ep = CutFixed*
G4Exp(c*x);
373 pv->PutValue(nbin, it, CrossSection);
379 if (CrossSection > 0.0) {
380 for (
G4int ib = 0; ib <= nbin; ++ib) {
381 pvv = pv->GetValue(ib, it);
382 pvv = pvv/CrossSection;
383 pv->PutValue(ib, it, pvv);
399 outFile <<
"G4MuonVDNuclearModel handles the inelastic scattering\n"
400 <<
"of mu- and mu+ from nuclei using the equivalent photon\n"
401 <<
"approximation in which the incoming lepton generates a\n"
402 <<
"virtual photon at the electromagnetic vertex, and the\n"
403 <<
"virtual photon is converted to a real photon. At low\n"
404 <<
"energies, the photon interacts directly with the nucleus\n"
405 <<
"using the Bertini cascade. At high energies the photon\n"
406 <<
"is converted to a pi0 which interacts using the FTFP\n"
407 <<
"model. The muon-nuclear cross sections of R. Kokoulin \n"
408 <<
"are used to generate the virtual photon spectrum\n";
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
G4double G4Log(G4double x)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
static G4CrossSectionDataSetRegistry * Instance()
const G4ThreeVector & GetMomentumDirection() const
G4double GetTotalEnergy() const
void InitialiseForElement(G4int Z, G4PhysicsVector *v)
G4Physics2DVector * GetElement2DData(G4int Z)
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
std::size_t GetNumberOfSecondaries() const
void SetEnergyChange(G4double anEnergy)
G4HadSecondary * GetSecondary(size_t i)
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
void SetCreatorModelID(G4int id)
G4HadronicInteraction * FindModel(const G4String &name)
static G4HadronicInteractionRegistry * Instance()
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
const G4String & GetModelName() const
void SetMaxEnergy(const G4double anEnergy)
static const char * Default_Name()
G4double ComputeDDMicroscopicCrossSection(G4double incidentKE, G4double Z, G4double A, G4double epsilon)
static G4MuonMinus * MuonMinus()
virtual void ModelDescription(std::ostream &outFile) const
virtual ~G4MuonVDNuclearModel()
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double GetPDGMass() const
G4double GetValue(std::size_t idx, std::size_t idy) const
G4double GetX(std::size_t index) const
static G4int GetModelID(const G4int modelIndex)
static G4PionZero * PionZero()
static G4Pow * GetInstance()
G4double logZ(G4int Z) const
void SetTransport(G4VIntraNuclearTransportModel *const value)
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus) override
void SetDeExcitation(G4VPreCompoundModel *ptr)
void SetFragmentationModel(G4VStringFragmentation *aModel)