Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4WentzelVIModel Class Reference

#include <G4WentzelVIModel.hh>

+ Inheritance diagram for G4WentzelVIModel:

Public Member Functions

 G4WentzelVIModel (G4bool comb=true, const G4String &nam="WentzelVIUni")
 
 ~G4WentzelVIModel () override
 
void Initialise (const G4ParticleDefinition *, const G4DataVector &) override
 
void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel) override
 
void StartTracking (G4Track *) override
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=DBL_MAX, G4double emax=DBL_MAX) override
 
G4ThreeVectorSampleScattering (const G4ThreeVector &, G4double safety) override
 
G4double ComputeTruePathLengthLimit (const G4Track &track, G4double &currentMinimalStep) override
 
G4double ComputeGeomPathLength (G4double truePathLength) override
 
G4double ComputeTrueStepLength (G4double geomStepLength) override
 
void SetFixedCut (G4double)
 
G4double GetFixedCut () const
 
void SetWVICrossSection (G4WentzelOKandVIxSection *)
 
G4WentzelOKandVIxSectionGetWVICrossSection ()
 
void SetUseSecondMoment (G4bool)
 
G4bool UseSecondMoment () const
 
G4PhysicsTableGetSecondMomentTable ()
 
G4double SecondMoment (const G4ParticleDefinition *, const G4MaterialCutsCouple *, G4double kineticEnergy)
 
void SetSingleScatteringFactor (G4double)
 
void DefineMaterial (const G4MaterialCutsCouple *)
 
G4WentzelVIModeloperator= (const G4WentzelVIModel &right)=delete
 
 G4WentzelVIModel (const G4WentzelVIModel &)=delete
 
- Public Member Functions inherited from G4VMscModel
 G4VMscModel (const G4String &nam)
 
 ~G4VMscModel () override
 
virtual G4double ComputeTruePathLengthLimit (const G4Track &track, G4double &stepLimit)=0
 
virtual G4double ComputeGeomPathLength (G4double truePathLength)=0
 
virtual G4double ComputeTrueStepLength (G4double geomPathLength)=0
 
virtual G4ThreeVectorSampleScattering (const G4ThreeVector &, G4double safety)=0
 
void InitialiseParameters (const G4ParticleDefinition *)
 
void DumpParameters (std::ostream &out) const
 
void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double tmax) override
 
void SetStepLimitType (G4MscStepLimitType)
 
void SetLateralDisplasmentFlag (G4bool val)
 
void SetRangeFactor (G4double)
 
void SetGeomFactor (G4double)
 
void SetSkin (G4double)
 
void SetLambdaLimit (G4double)
 
void SetSafetyFactor (G4double)
 
void SetSampleZ (G4bool)
 
G4VEnergyLossProcessGetIonisation () const
 
void SetIonisation (G4VEnergyLossProcess *, const G4ParticleDefinition *part)
 
G4double ComputeSafety (const G4ThreeVector &position, G4double limit=DBL_MAX)
 
G4double ComputeGeomLimit (const G4Track &, G4double &presafety, G4double limit)
 
G4double GetDEDX (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
 
G4double GetDEDX (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple, G4double logKineticEnergy)
 
G4double GetRange (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
 
G4double GetRange (const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple, G4double logKineticEnergy)
 
G4double GetEnergy (const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
 
G4double GetTransportMeanFreePath (const G4ParticleDefinition *part, G4double kinEnergy)
 
G4double GetTransportMeanFreePath (const G4ParticleDefinition *part, G4double kinEnergy, G4double logKinEnergy)
 
G4VMscModeloperator= (const G4VMscModel &right)=delete
 
 G4VMscModel (const G4VMscModel &)=delete
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)=0
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double tmax=DBL_MAX)=0
 
virtual void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel)
 
virtual void InitialiseForMaterial (const G4ParticleDefinition *, const G4Material *)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double GetPartialCrossSection (const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ComputeCrossSectionPerShell (const G4ParticleDefinition *, G4int Z, G4int shellIdx, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double &length, G4double &eloss)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *, G4double cut=0.0)
 
virtual G4double MinEnergyCut (const G4ParticleDefinition *, const G4MaterialCutsCouple *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
virtual void FillNumberOfSecondaries (G4int &numberOfTriplets, G4int &numberOfRecoil)
 
virtual void ModelDescription (std::ostream &outFile) const
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
std::vector< G4EmElementSelector * > * GetElementSelectors ()
 
void SetElementSelectors (std::vector< G4EmElementSelector * > *)
 
G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectTargetAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double logKineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementGetCurrentElement (const G4Material *mat=nullptr) const
 
G4int SelectRandomAtomNumber (const G4Material *) const
 
const G4IsotopeGetCurrentIsotope (const G4Element *elm=nullptr) const
 
G4int SelectIsotopeNumber (const G4Element *) const
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=nullptr)
 
void SetCrossSectionTable (G4PhysicsTable *, G4bool isLocal)
 
G4ElementDataGetElementData ()
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
G4VEmModelGetTripletModel ()
 
void SetTripletModel (G4VEmModel *)
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool LPMFlag () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
G4bool UseAngularGeneratorFlag () const
 
void SetAngularGeneratorFlag (G4bool)
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy) const
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetLPMFlag (G4bool val)
 
void SetDeexcitationFlag (G4bool val)
 
void SetForceBuildTable (G4bool val)
 
void SetFluctuationFlag (G4bool val)
 
void SetMasterThread (G4bool val)
 
G4bool IsMaster () const
 
void SetUseBaseMaterials (G4bool val)
 
G4bool UseBaseMaterials () const
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
G4bool IsLocked () const
 
void SetLocked (G4bool)
 
G4VEmModeloperator= (const G4VEmModel &right)=delete
 
 G4VEmModel (const G4VEmModel &)=delete
 

Protected Member Functions

G4double ComputeTransportXSectionPerVolume (G4double cosTheta)
 
void SetupParticle (const G4ParticleDefinition *)
 
- Protected Member Functions inherited from G4VMscModel
G4ParticleChangeForMSCGetParticleChangeForMSC (const G4ParticleDefinition *p=nullptr)
 
G4double ConvertTrueToGeom (G4double &tLength, G4double &gLength)
 
void SetUseSplineForMSC (G4bool val)
 
- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 

Protected Attributes

G4WentzelOKandVIxSectionwokvi
 
const G4MaterialCutsCouplecurrentCouple = nullptr
 
const G4MaterialcurrentMaterial = nullptr
 
const G4ParticleDefinitionparticle = nullptr
 
G4ParticleChangeForMSCfParticleChange = nullptr
 
const G4DataVectorcurrentCuts = nullptr
 
G4PhysicsTablefSecondMoments = nullptr
 
G4double lowEnergyLimit
 
G4double tlimitminfix
 
G4double ssFactor = 1.05
 
G4double invssFactor = 1.0
 
G4double preKinEnergy = 0.0
 
G4double tPathLength = 0.0
 
G4double zPathLength = 0.0
 
G4double lambdaeff = 0.0
 
G4double currentRange = 0.0
 
G4double cosTetMaxNuc = 0.0
 
G4double fixedCut = -1.0
 
G4double effKinEnergy = 0.0
 
G4double cosThetaMin = 1.0
 
G4double cosThetaMax = -1.0
 
G4double xtsec = 0.0
 
G4int currentMaterialIndex = 0
 
size_t idx2 = 0
 
G4int nelments = 0
 
G4bool singleScatteringMode
 
G4bool isCombined
 
G4bool useSecondMoment
 
std::vector< G4doublexsecn
 
std::vector< G4doubleprob
 
- Protected Attributes inherited from G4VMscModel
G4double facrange = 0.04
 
G4double facgeom = 2.5
 
G4double facsafety = 0.6
 
G4double skin = 1.0
 
G4double dtrl = 0.05
 
G4double lambdalimit
 
G4double geomMin
 
G4double geomMax
 
G4ThreeVector fDisplacement
 
G4MscStepLimitType steppingAlgorithm
 
G4bool samplez = false
 
G4bool latDisplasment = true
 
- Protected Attributes inherited from G4VEmModel
G4ElementDatafElementData = nullptr
 
G4VParticleChangepParticleChange = nullptr
 
G4PhysicsTablexSectionTable = nullptr
 
const G4MaterialpBaseMaterial = nullptr
 
const std::vector< G4double > * theDensityFactor = nullptr
 
const std::vector< G4int > * theDensityIdx = nullptr
 
G4double inveplus
 
G4double pFactor = 1.0
 
size_t currentCoupleIndex = 0
 
size_t basedCoupleIndex = 0
 
G4bool lossFlucFlag = true
 

Detailed Description

Definition at line 65 of file G4WentzelVIModel.hh.

Constructor & Destructor Documentation

◆ G4WentzelVIModel() [1/2]

G4WentzelVIModel::G4WentzelVIModel ( G4bool  comb = true,
const G4String nam = "WentzelVIUni" 
)
explicit

Definition at line 77 of file G4WentzelVIModel.cc.

78 : G4VMscModel(nam),
80 isCombined(comb),
81 useSecondMoment(false)
82{
83 tlimitminfix = 1.e-6*CLHEP::mm;
84 lowEnergyLimit = 1.0*CLHEP::eV;
87}
void SetSingleScatteringFactor(G4double)
G4WentzelOKandVIxSection * wokvi

◆ ~G4WentzelVIModel()

G4WentzelVIModel::~G4WentzelVIModel ( )
override

Definition at line 91 of file G4WentzelVIModel.cc.

92{
93 delete wokvi;
94 if(IsMaster()) {
95 delete fSecondMoments;
96 fSecondMoments = nullptr;
97 }
98}
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
G4PhysicsTable * fSecondMoments

◆ G4WentzelVIModel() [2/2]

G4WentzelVIModel::G4WentzelVIModel ( const G4WentzelVIModel )
delete

Member Function Documentation

◆ ComputeCrossSectionPerAtom()

G4double G4WentzelVIModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition p,
G4double  KineticEnergy,
G4double  AtomicNumber,
G4double  AtomicWeight = 0.,
G4double  cut = DBL_MAX,
G4double  emax = DBL_MAX 
)
overridevirtual

Reimplemented from G4VEmModel.

Reimplemented in G4WentzelVIRelModel.

Definition at line 211 of file G4WentzelVIModel.cc.

216{
217 G4double cross = 0.0;
218 SetupParticle(p);
219 if(kinEnergy < lowEnergyLimit) { return cross; }
220 if(nullptr == CurrentCouple()) {
221 G4Exception("G4WentzelVIModel::ComputeCrossSectionPerAtom", "em0011",
222 FatalException, " G4MaterialCutsCouple is not defined");
223 return 0.0;
224 }
227 if(cosTetMaxNuc < 1.0) {
228 G4double cut = (0.0 < fixedCut) ? fixedCut : cutEnergy;
229 G4double cost = wokvi->SetupTarget(G4lrint(Z), cut);
231 /*
232 if(p->GetParticleName() == "e-")
233 G4cout << "G4WentzelVIModel::CS: Z= " << G4int(Z) << " e(MeV)= "<<kinEnergy
234 << " 1-cosN= " << 1 - cosTetMaxNuc << " cross(bn)= " << cross/barn
235 << " " << particle->GetParticleName() << G4endl;
236 */
237 }
238 return cross;
239}
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
double G4double
Definition: G4Types.hh:83
const G4int Z[17]
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:486
G4double SetupTarget(G4int Z, G4double cut)
G4double ComputeTransportCrossSectionPerAtom(G4double CosThetaMax)
virtual G4double SetupKinematic(G4double kinEnergy, const G4Material *mat)
void DefineMaterial(const G4MaterialCutsCouple *)
const G4Material * currentMaterial
void SetupParticle(const G4ParticleDefinition *)
int G4lrint(double ad)
Definition: templates.hh:134

◆ ComputeGeomPathLength()

G4double G4WentzelVIModel::ComputeGeomPathLength ( G4double  truePathLength)
overridevirtual

Implements G4VMscModel.

Definition at line 353 of file G4WentzelVIModel.cc.

354{
355 zPathLength = tPathLength = truelength;
356
357 // small step use only single scattering
358 cosThetaMin = 1.0;
360 //G4cout << "xtsec= " << xtsec << " Nav= "
361 // << zPathLength*xtsec << G4endl;
365
366 } else {
367 //G4cout << "ComputeGeomPathLength: tLength= " << tPathLength
368 // << " Leff= " << lambdaeff << G4endl;
369 // small step
372 zPathLength *= (1.0 - 0.5*tau + tau*tau/6.0);
373
374 // medium step
375 } else {
376 G4double e1 = 0.0;
379 }
380 effKinEnergy = 0.5*(e1 + preKinEnergy);
383 //G4cout << " tLength= "<< tPathLength<< " Leff= " << lambdaeff << G4endl;
387 }
388 }
389 }
390 //G4cout << "Comp.geom: zLength= "<<zPathLength<<" tLength= "
391 // << tPathLength<< " Leff= " << lambdaeff << G4endl;
392 return zPathLength;
393}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
int G4int
Definition: G4Types.hh:85
const G4double numlimit
const G4int minNCollisions
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
Definition: G4VMscModel.hh:325
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.cc:223
G4double ComputeTransportXSectionPerVolume(G4double cosTheta)
const G4MaterialCutsCouple * currentCouple
const G4ParticleDefinition * particle
#define DBL_MAX
Definition: templates.hh:62

◆ ComputeTransportXSectionPerVolume()

G4double G4WentzelVIModel::ComputeTransportXSectionPerVolume ( G4double  cosTheta)
protected

Definition at line 704 of file G4WentzelVIModel.cc.

705{
706 // prepare recomputation of x-sections
707 const G4ElementVector* theElementVector = currentMaterial->GetElementVector();
708 const G4double* theAtomNumDensityVector =
711 if(nelm > nelments) {
712 nelments = nelm;
713 xsecn.resize(nelm);
714 prob.resize(nelm);
715 }
716
717 // check consistency
718 xtsec = 0.0;
719 if(cosTetMaxNuc >= cosTheta) { return 0.0; }
720
721 G4double cut = (*currentCuts)[currentMaterialIndex];
722 if(fixedCut > 0.0) { cut = fixedCut; }
723
724 // loop over elements
725 G4double xs = 0.0;
726 for (G4int i=0; i<nelm; ++i) {
727 G4double costm =
728 wokvi->SetupTarget((*theElementVector)[i]->GetZasInt(), cut);
729 G4double density = theAtomNumDensityVector[i];
730
731 G4double esec = 0.0;
732 if(costm < cosTheta) {
733
734 // recompute the transport x-section
735 if(1.0 > cosTheta) {
736 xs += density*wokvi->ComputeTransportCrossSectionPerAtom(cosTheta);
737 }
738 // recompute the total x-section
739 G4double nucsec = wokvi->ComputeNuclearCrossSection(cosTheta, costm);
740 esec = wokvi->ComputeElectronCrossSection(cosTheta, costm);
741 nucsec += esec;
742 if(nucsec > 0.0) { esec /= nucsec; }
743 xtsec += nucsec*density;
744 }
745 xsecn[i] = xtsec;
746 prob[i] = esec;
747 //G4cout << i << " xs= " << xs << " xtsec= " << xtsec
748 // << " 1-cosTheta= " << 1-cosTheta
749 // << " 1-cosTetMaxNuc2= " <<1-cosTetMaxNuc2<< G4endl;
750 }
751
752 //G4cout << "ComputeXS result: xsec(1/mm)= " << xs
753 // << " txsec(1/mm)= " << xtsec <<G4endl;
754 return xs;
755}
std::vector< const G4Element * > G4ElementVector
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:201
G4double ComputeElectronCrossSection(G4double CosThetaMin, G4double CosThetaMax)
G4double ComputeNuclearCrossSection(G4double CosThetaMin, G4double CosThetaMax)
std::vector< G4double > prob
std::vector< G4double > xsecn

Referenced by ComputeGeomPathLength(), and ComputeTrueStepLength().

◆ ComputeTruePathLengthLimit()

G4double G4WentzelVIModel::ComputeTruePathLengthLimit ( const G4Track track,
G4double currentMinimalStep 
)
overridevirtual

Implements G4VMscModel.

Definition at line 255 of file G4WentzelVIModel.cc.

258{
259 G4double tlimit = currentMinimalStep;
260 const G4DynamicParticle* dp = track.GetDynamicParticle();
261 const G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
262 G4StepStatus stepStatus = sp->GetStepStatus();
263 singleScatteringMode = false;
264
265 //G4cout << "G4WentzelVIModel::ComputeTruePathLengthLimit stepStatus= "
266 // << stepStatus << " " << track.GetDefinition()->GetParticleName()
267 // << G4endl;
268
269 // initialisation for each step, lambda may be computed from scratch
273 const G4double logPreKinEnergy = dp->GetLogKineticEnergy();
277
278 //G4cout << "lambdaeff= " << lambdaeff << " Range= " << currentRange
279 // << " tlimit= " << tlimit << " 1-cost= " << 1 - cosTetMaxNuc << G4endl;
280
281 // extra check for abnormal situation
282 // this check needed to run MSC with eIoni and eBrem inactivated
283 if(tlimit > currentRange) { tlimit = currentRange; }
284
285 // stop here if small range particle
286 if(tlimit < tlimitminfix) {
287 return ConvertTrueToGeom(tlimit, currentMinimalStep);
288 }
289
290 // pre step
291 G4double presafety = sp->GetSafety();
292 // far from geometry boundary
293 if(currentRange < presafety) {
294 return ConvertTrueToGeom(tlimit, currentMinimalStep);
295 }
296
297 // compute presafety again if presafety <= 0 and no boundary
298 // i.e. when it is needed for optimization purposes
299 if(stepStatus != fGeomBoundary && presafety < tlimitminfix) {
300 presafety = ComputeSafety(sp->GetPosition(), tlimit);
301 if(currentRange < presafety) {
302 return ConvertTrueToGeom(tlimit, currentMinimalStep);
303 }
304 }
305 /*
306 G4cout << "e(MeV)= " << preKinEnergy/MeV
307 << " " << particle->GetParticleName()
308 << " CurLimit(mm)= " << tlimit/mm <<" safety(mm)= " << presafety/mm
309 << " R(mm)= " <<currentRange/mm
310 << " L0(mm^-1)= " << lambdaeff*mm
311 << G4endl;
312 */
313 // natural limit for high energy
314 G4double rlimit = std::max(facrange*currentRange,
316
317 // low-energy e-
319 rlimit = std::min(rlimit, facsafety*presafety);
320 }
321
322 // cut correction
324 //G4cout << "rcut= " << rcut << " rlimit= " << rlimit << " presafety= "
325 // << presafety << " 1-cosThetaMax= " <<1-cosThetaMax
326 //<< " 1-cosTetMaxNuc= " << 1-cosTetMaxNuc << G4endl;
327 if(rcut > rlimit) { rlimit = std::min(rlimit, rcut*sqrt(rlimit/rcut)); }
328
329 tlimit = std::min(tlimit, rlimit);
330 tlimit = std::max(tlimit, tlimitminfix);
331
332 // step limit in infinite media
333 tlimit = std::min(tlimit, 50*currentMaterial->GetRadlen()/facgeom);
334
335 //compute geomlimit and force few steps within a volume
337 && stepStatus == fGeomBoundary) {
338
339 G4double geomlimit = ComputeGeomLimit(track, presafety, currentRange);
340 tlimit = std::min(tlimit, geomlimit/facgeom);
341 }
342 /*
343 G4cout << particle->GetParticleName() << " e= " << preKinEnergy
344 << " L0= " << lambdaeff << " R= " << currentRange
345 << " tlimit= " << tlimit
346 << " currentMinimalStep= " << currentMinimalStep << G4endl;
347 */
348 return ConvertTrueToGeom(tlimit, currentMinimalStep);
349}
@ fUseDistanceToBoundary
G4StepStatus
Definition: G4StepStatus.hh:40
@ fGeomBoundary
Definition: G4StepStatus.hh:43
G4double GetLogKineticEnergy() const
G4double GetKineticEnergy() const
G4ProductionCuts * GetProductionCuts() const
G4double GetRadlen() const
Definition: G4Material.hh:215
G4double GetProductionCut(G4int index) const
G4StepPoint * GetPreStepPoint() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
const G4Step * GetStep() const
G4double facrange
Definition: G4VMscModel.hh:199
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
Definition: G4VMscModel.hh:296
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.cc:188
G4MscStepLimitType steppingAlgorithm
Definition: G4VMscModel.hh:209
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
Definition: G4VMscModel.hh:286
G4double ComputeSafety(const G4ThreeVector &position, G4double limit=DBL_MAX)
Definition: G4VMscModel.hh:278
G4double facsafety
Definition: G4VMscModel.hh:201
G4double facgeom
Definition: G4VMscModel.hh:200

◆ ComputeTrueStepLength()

G4double G4WentzelVIModel::ComputeTrueStepLength ( G4double  geomStepLength)
overridevirtual

Implements G4VMscModel.

Definition at line 397 of file G4WentzelVIModel.cc.

398{
399 // initialisation of single scattering x-section
400 /*
401 G4cout << "ComputeTrueStepLength: Step= " << geomStepLength
402 << " geomL= " << zPathLength
403 << " Lambda= " << lambdaeff
404 << " 1-cosThetaMaxNuc= " << 1 - cosTetMaxNuc << G4endl;
405 */
407 zPathLength = tPathLength = geomStepLength;
408
409 } else {
410
411 // step defined by transportation
412 // change both geom and true step lengths
413 if(geomStepLength < zPathLength) {
414
415 // single scattering
416 if(G4int(geomStepLength*xtsec) < minNCollisions) {
417 zPathLength = tPathLength = geomStepLength;
420
421 // multiple scattering
422 } else {
423 // small step
424 if(geomStepLength < numlimit*lambdaeff) {
425 G4double tau = geomStepLength/lambdaeff;
426 tPathLength = geomStepLength*(1.0 + 0.5*tau + tau*tau/3.0);
427
428 // energy correction for a big step
429 } else {
430 tPathLength *= geomStepLength/zPathLength;
431 G4double e1 = 0.0;
434 }
435 effKinEnergy = 0.5*(e1 + preKinEnergy);
438 G4double tau = geomStepLength/lambdaeff;
439
440 if(tau < 0.999999) { tPathLength = -lambdaeff*G4Log(1.0 - tau); }
441 else { tPathLength = currentRange; }
442 }
443 zPathLength = geomStepLength;
444 }
445 }
446 }
447 // check of step length
448 // define threshold angle between single and multiple scattering
451 xtsec = 0.0;
452
453 // recompute transport cross section - do not change energy
454 // anymore - cannot be applied for big steps
456 // new computation
458 //G4cout << "%%%% cross= " << cross << " xtsec= " << xtsec
459 // << " 1-cosTMin= " << 1.0 - cosThetaMin << G4endl;
460 if(cross <= 0.0) {
464 cosThetaMin = 1.0;
465 } else if(xtsec > 0.0) {
466
467 lambdaeff = 1./cross;
468 G4double tau = zPathLength*cross;
469 if(tau < numlimit) {
470 tPathLength = zPathLength*(1.0 + 0.5*tau + tau*tau/3.0);
471 } else if(tau < 0.999999) {
472 tPathLength = -lambdaeff*G4Log(1.0 - tau);
473 } else {
475 }
476 }
477 }
478 }
480 /*
481 G4cout <<"Comp.true: zLength= "<<zPathLength<<" tLength= "<<tPathLength
482 <<" Leff(mm)= "<<lambdaeff/mm<<" sig0(1/mm)= " << xtsec <<G4endl;
483 G4cout << particle->GetParticleName() << " 1-cosThetaMin= " << 1-cosThetaMin
484 << " 1-cosTetMaxNuc= " << 1-cosTetMaxNuc
485 << " e(MeV)= " << preKinEnergy/MeV << " "
486 << " SSmode= " << singleScatteringMode << G4endl;
487 */
488 return tPathLength;
489}
G4double G4Log(G4double x)
Definition: G4Log.hh:227

◆ DefineMaterial()

void G4WentzelVIModel::DefineMaterial ( const G4MaterialCutsCouple cup)

Definition at line 199 of file G4WentzelVIModel.cc.

200{
201 if(cup != currentCouple) {
202 currentCouple = cup;
203 SetCurrentCouple(cup);
206 }
207}
const G4Material * GetMaterial() const
void SetCurrentCouple(const G4MaterialCutsCouple *)
Definition: G4VEmModel.hh:468

Referenced by ComputeCrossSectionPerAtom(), G4LowEWentzelVIModel::ComputeTruePathLengthLimit(), ComputeTruePathLengthLimit(), Initialise(), and SecondMoment().

◆ GetFixedCut()

G4double G4WentzelVIModel::GetFixedCut ( ) const
inline

Definition at line 208 of file G4WentzelVIModel.hh.

209{
210 return fixedCut;
211}

◆ GetSecondMomentTable()

G4PhysicsTable * G4WentzelVIModel::GetSecondMomentTable ( )
inline

Definition at line 246 of file G4WentzelVIModel.hh.

247{
248 return fSecondMoments;
249}

Referenced by InitialiseLocal().

◆ GetWVICrossSection()

G4WentzelOKandVIxSection * G4WentzelVIModel::GetWVICrossSection ( )
inline

Definition at line 225 of file G4WentzelVIModel.hh.

226{
227 return wokvi;
228}

Referenced by G4WentzelVIRelModel::DefineMaterial().

◆ Initialise()

void G4WentzelVIModel::Initialise ( const G4ParticleDefinition p,
const G4DataVector cuts 
)
overridevirtual

Implements G4VEmModel.

Reimplemented in G4WentzelVIRelModel.

Definition at line 102 of file G4WentzelVIModel.cc.

104{
105 // reset parameters
106 SetupParticle(p);
108 currentRange = 0.0;
109
110 if(isCombined) {
112 if(tet <= 0.0) { cosThetaMax = 1.0; }
113 else if(tet < CLHEP::pi) { cosThetaMax = cos(tet); }
114 }
115 //G4cout << "G4WentzelVIModel::Initialise " << p->GetParticleName()
116 // << " " << this << " " << wokvi << G4endl;
117
119 /*
120 G4cout << "G4WentzelVIModel: " << particle->GetParticleName()
121 << " 1-cos(ThetaLimit)= " << 1 - cosThetaMax
122 << " SingScatFactor= " << ssFactor
123 << G4endl;
124 */
125 currentCuts = &cuts;
126
127 // set values of some data members
129
130 // Access to materials
131 const G4ProductionCutsTable* theCoupleTable =
133 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize();
134 nelments = 0;
135 for(G4int i=0; i<numOfCouples; ++i) {
136 G4int nelm = (G4int)theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial()->GetNumberOfElements();
137 nelments = std::max(nelments, nelm);
138 }
139 xsecn.resize(nelments);
140 prob.resize(nelments);
141
142 // build second moment table only if transport table is build
144 if(useSecondMoment && IsMaster() && nullptr != table) {
145
146 //G4cout << "### G4WentzelVIModel::Initialise: build 2nd moment table "
147 // << table << G4endl;
150
151 G4bool splineFlag = true;
152 G4PhysicsVector* aVector = nullptr;
153 G4PhysicsVector* bVector = nullptr;
156 if(emin < emax) {
158 *G4lrint(std::log10(emax/emin));
159 if(n < 3) { n = 3; }
160
161 for(G4int i=0; i<numOfCouples; ++i) {
162
163 //G4cout<< "i= " << i << " Flag= " << fSecondMoments->GetFlag(i)
164 // << G4endl;
165 if(fSecondMoments->GetFlag(i)) {
166 DefineMaterial(theCoupleTable->GetMaterialCutsCouple(i));
167
168 delete (*fSecondMoments)[i];
169 if(nullptr == aVector) {
170 aVector = new G4PhysicsLogVector(emin, emax, n, splineFlag);
171 bVector = aVector;
172 } else {
173 bVector = new G4PhysicsVector(*aVector);
174 }
175 for(std::size_t j=0; j<n; ++j) {
176 G4double e = bVector->Energy(j);
177 bVector->PutValue(j, ComputeSecondMoment(p, e)*e*e);
178 }
179 if(splineFlag) { bVector->FillSecondDerivatives(); }
180 (*fSecondMoments)[i] = bVector;
181 }
182 }
183 }
184 //G4cout << *fSecondMoments << G4endl;
185 }
186}
bool G4bool
Definition: G4Types.hh:86
static G4EmParameters * Instance()
G4int NumberOfBinsPerDecade() const
static G4PhysicsTable * PreparePhysicsTable(G4PhysicsTable *physTable)
G4bool GetFlag(std::size_t i) const
void PutValue(const std::size_t index, const G4double value)
G4double Energy(const std::size_t index) const
void FillSecondDerivatives(const G4SplineType=G4SplineType::Base, const G4double dir1=0.0, const G4double dir2=0.0)
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
G4double PolarAngleLimit() const
Definition: G4VEmModel.hh:662
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
G4double HighEnergyActivationLimit() const
Definition: G4VEmModel.hh:648
G4PhysicsTable * GetCrossSectionTable()
Definition: G4VEmModel.hh:849
G4double LowEnergyActivationLimit() const
Definition: G4VEmModel.hh:655
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=nullptr)
Definition: G4VMscModel.cc:77
void InitialiseParameters(const G4ParticleDefinition *)
Definition: G4VMscModel.cc:115
void Initialise(const G4ParticleDefinition *, G4double CosThetaLim)
G4ParticleChangeForMSC * fParticleChange
const G4DataVector * currentCuts

Referenced by G4WentzelVIRelModel::Initialise().

◆ InitialiseLocal()

void G4WentzelVIModel::InitialiseLocal ( const G4ParticleDefinition ,
G4VEmModel masterModel 
)
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 190 of file G4WentzelVIModel.cc.

192{
193 fSecondMoments = static_cast<G4WentzelVIModel*>(masterModel)
195}
G4PhysicsTable * GetSecondMomentTable()

◆ operator=()

G4WentzelVIModel & G4WentzelVIModel::operator= ( const G4WentzelVIModel right)
delete

◆ SampleScattering()

G4ThreeVector & G4WentzelVIModel::SampleScattering ( const G4ThreeVector oldDirection,
G4double  safety 
)
overridevirtual

Implements G4VMscModel.

Definition at line 494 of file G4WentzelVIModel.cc.

496{
497 fDisplacement.set(0.0,0.0,0.0);
498 //G4cout << "!##! G4WentzelVIModel::SampleScattering for "
499 // << particle->GetParticleName() << G4endl;
500
501 // ignore scattering for zero step length and energy below the limit
503 { return fDisplacement; }
504
505 G4double invlambda = 0.0;
506 if(lambdaeff < DBL_MAX) { invlambda = 0.5/lambdaeff; }
507
508 // use average kinetic energy over the step
509 G4double cut = (*currentCuts)[currentMaterialIndex];
510 if(fixedCut > 0.0) { cut = fixedCut; }
511 /*
512 G4cout <<"SampleScat: E0(MeV)= "<< preKinEnergy/MeV
513 << " Leff= " << lambdaeff <<" sig0(1/mm)= " << xtsec
514 << " xmsc= " << tPathLength*invlambda
515 << " safety= " << safety << G4endl;
516 */
517 // step limit due msc
518 G4int nMscSteps = 1;
520 G4double z0 = x0*invlambda;
521 //G4double zzz = 0.0;
522 G4double prob2 = 0.0;
523
524 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
525
526 // large scattering angle case - two step approach
528 static const G4double zzmin = 0.05;
529 if(useSecondMoment) {
530 G4double z1 = invlambda*invlambda;
532 prob2 = (z2 - z1)/(1.5*z1 - z2);
533 }
534 // if(z0 > zzmin && safety > tlimitminfix) {
535 if(z0 > zzmin) {
536 x0 *= 0.5;
537 z0 *= 0.5;
538 nMscSteps = 2;
539 }
540 //if(z0 > zzmin) { zzz = G4Exp(-1.0/z0); }
541 G4double zzz = 0.0;
542 if(z0 > zzmin) {
543 zzz = G4Exp(-1.0/z0);
544 z0 += zzz;
545 prob2 *= (1 + zzz);
546 }
547 prob2 /= (1 + prob2);
548 }
549
550 // step limit due to single scattering
551 G4double x1 = 2*tPathLength;
552 if(0.0 < xtsec) { x1 = -G4Log(rndmEngine->flat())/xtsec; }
553
554 // no scattering case
556 { return fDisplacement; }
557
558 const G4ElementVector* theElementVector =
560 std::size_t nelm = currentMaterial->GetNumberOfElements();
561
562 // geometry
563 G4double sint, cost, phi;
564 G4ThreeVector temp(0.0,0.0,1.0);
565
566 // current position and direction relative to the end point
567 // because of magnetic field geometry is computed relatively to the
568 // end point of the step
569 G4ThreeVector dir(0.0,0.0,1.0);
570 fDisplacement.set(0.0,0.0,-zPathLength);
571
573
574 // start a loop
575 G4double x2 = x0;
576 G4double step, z;
577 G4bool singleScat;
578 /*
579 G4cout << "Start of the loop x1(mm)= " << x1 << " x2(mm)= " << x2
580 << " 1-cost1= " << 1 - cosThetaMin << " SSmode= " << singleScatteringMode
581 << " xtsec= " << xtsec << " Nst= " << nMscSteps << G4endl;
582 */
583 do {
584
585 //G4cout << "# x1(mm)= "<< x1<< " x2(mm)= "<< x2 << G4endl;
586 // single scattering case
587 if(singleScatteringMode && x1 > x2) {
588 fDisplacement += x2*mscfac*dir;
589 break;
590 }
591
592 // what is next single of multiple?
593 if(x1 <= x2) {
594 step = x1;
595 singleScat = true;
596 } else {
597 step = x2;
598 singleScat = false;
599 }
600
601 //G4cout << "# step(mm)= "<< step<< " singlScat= "<< singleScat << G4endl;
602
603 // new position
604 fDisplacement += step*mscfac*dir;
605
606 if(singleScat) {
607
608 // select element
609 std::size_t i = 0;
610 if(nelm > 1) {
611 G4double qsec = rndmEngine->flat()*xtsec;
612 for (; i<nelm; ++i) { if(xsecn[i] >= qsec) { break; } }
613 }
614 G4double cosTetM =
615 wokvi->SetupTarget((*theElementVector)[i]->GetZasInt(), cut);
616 //G4cout << "!!! " << cosThetaMin << " " << cosTetM << " "
617 // << prob[i] << G4endl;
618 temp = wokvi->SampleSingleScattering(cosThetaMin, cosTetM, prob[i]);
619
620 // direction is changed
621 temp.rotateUz(dir);
622 dir = temp;
623 //G4cout << dir << G4endl;
624
625 // new proposed step length
626 x2 -= step;
627 x1 = -G4Log(rndmEngine->flat())/xtsec;
628
629 // multiple scattering
630 } else {
631 --nMscSteps;
632 x1 -= step;
633 x2 = x0;
634
635 // sample z in interval 0 - 1
636 G4bool isFirst = true;
637 if(prob2 > 0.0 && rndmEngine->flat() < prob2) { isFirst = false; }
638 do {
639 //z = -z0*G4Log(1.0 - (1.0 - zzz)*rndmEngine->flat());
640 if(isFirst) { z = -G4Log(rndmEngine->flat()); }
641 else { z = G4RandGamma::shoot(rndmEngine, 2.0, 2.0); }
642 z *= z0;
643 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
644 } while(z > 1.0);
645
646 cost = 1.0 - 2.0*z/*factCM*/;
647 if(cost > 1.0) { cost = 1.0; }
648 else if(cost < -1.0) { cost =-1.0; }
649 sint = sqrt((1.0 - cost)*(1.0 + cost));
650 phi = twopi*rndmEngine->flat();
651 G4double vx1 = sint*cos(phi);
652 G4double vy1 = sint*sin(phi);
653
654 // lateral displacement
655 if (latDisplasment) {
656 G4double rms = invsqrt12*sqrt(2*z0);
657 G4double r = x0*mscfac;
658 G4double dx = r*(0.5*vx1 + rms*G4RandGauss::shoot(rndmEngine,0.0,1.0));
659 G4double dy = r*(0.5*vy1 + rms*G4RandGauss::shoot(rndmEngine,0.0,1.0));
660 G4double d = r*r - dx*dx - dy*dy;
661
662 // change position
663 if(d >= 0.0) {
664 temp.set(dx,dy,sqrt(d) - r);
665 temp.rotateUz(dir);
666 fDisplacement += temp;
667 }
668 }
669 // change direction
670 temp.set(vx1,vy1,cost);
671 temp.rotateUz(dir);
672 dir = temp;
673 }
674 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
675 } while (0 < nMscSteps);
676
677 dir.rotateUz(oldDirection);
678
679 //G4cout<<"G4WentzelVIModel sampling is done 1-cost= "<< 1.-dir.z()<<G4endl;
680 // end of sampling -------------------------------
681
683
684 // lateral displacement
685 fDisplacement.rotateUz(oldDirection);
686
687 /*
688 G4cout << " r(mm)= " << fDisplacement.mag()
689 << " safety= " << safety
690 << " trueStep(mm)= " << tPathLength
691 << " geomStep(mm)= " << zPathLength
692 << " x= " << fDisplacement.x()
693 << " y= " << fDisplacement.y()
694 << " z= " << fDisplacement.z()
695 << G4endl;
696 */
697
698 //G4cout<< "G4WentzelVIModel::SampleScattering end NewDir= " << dir<< G4endl;
699 return fDisplacement;
700}
const G4double invsqrt12
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
virtual double flat()=0
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
G4bool latDisplasment
Definition: G4VMscModel.hh:212
G4ThreeVector fDisplacement
Definition: G4VMscModel.hh:208
G4ThreeVector & SampleSingleScattering(G4double CosThetaMin, G4double CosThetaMax, G4double elecRatio)
G4double SecondMoment(const G4ParticleDefinition *, const G4MaterialCutsCouple *, G4double kineticEnergy)

◆ SecondMoment()

G4double G4WentzelVIModel::SecondMoment ( const G4ParticleDefinition part,
const G4MaterialCutsCouple couple,
G4double  kineticEnergy 
)
inline

Definition at line 254 of file G4WentzelVIModel.hh.

257{
258 G4double x = 0.0;
259 if(useSecondMoment) {
260 DefineMaterial(couple);
261 x = (fSecondMoments) ?
262 (*fSecondMoments)[(*theDensityIdx)[currentMaterialIndex]]->Value(ekin, idx2)
263 *(*theDensityFactor)[currentMaterialIndex]/(ekin*ekin)
264 : ComputeSecondMoment(part, ekin);
265 }
266 return x;
267}

Referenced by SampleScattering().

◆ SetFixedCut()

void G4WentzelVIModel::SetFixedCut ( G4double  val)
inline

Definition at line 201 of file G4WentzelVIModel.hh.

202{
203 fixedCut = val;
204}

◆ SetSingleScatteringFactor()

void G4WentzelVIModel::SetSingleScatteringFactor ( G4double  val)

Definition at line 789 of file G4WentzelVIModel.cc.

790{
791 if(val > 0.05) {
792 ssFactor = val;
793 invssFactor = 1.0/(val - 0.05);
794 }
795}

Referenced by G4LowEWentzelVIModel::G4LowEWentzelVIModel(), and G4WentzelVIModel().

◆ SetupParticle()

void G4WentzelVIModel::SetupParticle ( const G4ParticleDefinition p)
inlineprotected

Definition at line 190 of file G4WentzelVIModel.hh.

191{
192 // Initialise mass and charge
193 if(p != particle) {
194 particle = p;
196 }
197}
void SetupParticle(const G4ParticleDefinition *)

Referenced by ComputeCrossSectionPerAtom(), G4WentzelVIRelModel::ComputeCrossSectionPerAtom(), Initialise(), and StartTracking().

◆ SetUseSecondMoment()

void G4WentzelVIModel::SetUseSecondMoment ( G4bool  val)
inline

Definition at line 232 of file G4WentzelVIModel.hh.

233{
234 useSecondMoment = val;
235}

◆ SetWVICrossSection()

void G4WentzelVIModel::SetWVICrossSection ( G4WentzelOKandVIxSection ptr)
inline

Definition at line 215 of file G4WentzelVIModel.hh.

216{
217 if(ptr != wokvi) {
218 delete wokvi;
219 wokvi = ptr;
220 }
221}

Referenced by G4WentzelVIRelModel::G4WentzelVIRelModel().

◆ StartTracking()

void G4WentzelVIModel::StartTracking ( G4Track track)
overridevirtual

Reimplemented from G4VEmModel.

Definition at line 243 of file G4WentzelVIModel.cc.

244{
245 /*
246 G4cout << "G4WentzelVIModel::StartTracking " << track << " " << this << " "
247 << track->GetParticleDefinition()->GetParticleName()
248 << " workvi: " << wokvi << G4endl;
249 */
251}
const G4ParticleDefinition * GetParticleDefinition() const

◆ UseSecondMoment()

G4bool G4WentzelVIModel::UseSecondMoment ( ) const
inline

Definition at line 239 of file G4WentzelVIModel.hh.

240{
241 return useSecondMoment;
242}

Member Data Documentation

◆ cosTetMaxNuc

◆ cosThetaMax

G4double G4WentzelVIModel::cosThetaMax = -1.0
protected

Definition at line 169 of file G4WentzelVIModel.hh.

Referenced by ComputeTruePathLengthLimit(), and Initialise().

◆ cosThetaMin

G4double G4WentzelVIModel::cosThetaMin = 1.0
protected

◆ currentCouple

◆ currentCuts

const G4DataVector* G4WentzelVIModel::currentCuts = nullptr
protected

Definition at line 146 of file G4WentzelVIModel.hh.

Referenced by Initialise().

◆ currentMaterial

◆ currentMaterialIndex

G4int G4WentzelVIModel::currentMaterialIndex = 0
protected

◆ currentRange

◆ effKinEnergy

G4double G4WentzelVIModel::effKinEnergy = 0.0
protected

◆ fixedCut

G4double G4WentzelVIModel::fixedCut = -1.0
protected

◆ fParticleChange

G4ParticleChangeForMSC* G4WentzelVIModel::fParticleChange = nullptr
protected

Definition at line 145 of file G4WentzelVIModel.hh.

Referenced by Initialise(), and SampleScattering().

◆ fSecondMoments

G4PhysicsTable* G4WentzelVIModel::fSecondMoments = nullptr
protected

◆ idx2

size_t G4WentzelVIModel::idx2 = 0
protected

Definition at line 173 of file G4WentzelVIModel.hh.

Referenced by SecondMoment().

◆ invssFactor

G4double G4WentzelVIModel::invssFactor = 1.0
protected

Definition at line 152 of file G4WentzelVIModel.hh.

Referenced by ComputeTruePathLengthLimit(), and SetSingleScatteringFactor().

◆ isCombined

G4bool G4WentzelVIModel::isCombined
protected

Definition at line 180 of file G4WentzelVIModel.hh.

Referenced by G4WentzelVIModel(), and Initialise().

◆ lambdaeff

◆ lowEnergyLimit

G4double G4WentzelVIModel::lowEnergyLimit
protected

◆ nelments

G4int G4WentzelVIModel::nelments = 0
protected

Definition at line 176 of file G4WentzelVIModel.hh.

Referenced by ComputeTransportXSectionPerVolume(), and Initialise().

◆ particle

◆ preKinEnergy

◆ prob

std::vector<G4double> G4WentzelVIModel::prob
protected

◆ singleScatteringMode

◆ ssFactor

G4double G4WentzelVIModel::ssFactor = 1.05
protected

Definition at line 151 of file G4WentzelVIModel.hh.

Referenced by ComputeTrueStepLength(), and SetSingleScatteringFactor().

◆ tlimitminfix

G4double G4WentzelVIModel::tlimitminfix
protected

◆ tPathLength

G4double G4WentzelVIModel::tPathLength = 0.0
protected

◆ useSecondMoment

G4bool G4WentzelVIModel::useSecondMoment
protected

◆ wokvi

◆ xsecn

std::vector<G4double> G4WentzelVIModel::xsecn
protected

◆ xtsec

G4double G4WentzelVIModel::xtsec = 0.0
protected

◆ zPathLength

G4double G4WentzelVIModel::zPathLength = 0.0
protected

The documentation for this class was generated from the following files: