Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronicBuilder.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Geant4 class G4HadronicBuilder
28//
29// Author V.Ivanchenko 14.05.2020
30//
31
32#include "G4HadronicBuilder.hh"
33#include "G4HadParticles.hh"
34#include "G4HadProcesses.hh"
35
37#include "G4ParticleTable.hh"
39
41
42#include "G4TheoFSGenerator.hh"
43#include "G4FTFModel.hh"
46
47#include "G4QGSModel.hh"
48#include "G4QGSParticipants.hh"
51
52#include "G4CascadeInterface.hh"
56#include "G4HadronElastic.hh"
58
61
62#include "G4DecayTable.hh"
63#include "G4VDecayChannel.hh"
65
66#include "G4PreCompoundModel.hh"
67#include "G4INCLXXInterface.hh"
68
69
70void G4HadronicBuilder::BuildFTFP_BERT(const std::vector<G4int>& partList,
71 G4bool bert, const G4String& xsName) {
72
75
76 auto theModel = new G4TheoFSGenerator("FTFP");
77 auto theStringModel = new G4FTFModel();
78 theStringModel->SetFragmentationModel(new G4ExcitedStringDecay());
79 theModel->SetHighEnergyGenerator( theStringModel );
80 theModel->SetTransport( new G4GeneratorPrecompoundInterface() );
81 theModel->SetMaxEnergy( param->GetMaxEnergy() );
82
83 G4CascadeInterface* theCascade = nullptr;
84 if(bert) {
85 theCascade = new G4CascadeInterface();
86 theCascade->SetMaxEnergy( param->GetMaxEnergyTransitionFTF_Cascade() );
87 theModel->SetMinEnergy( param->GetMinEnergyTransitionFTF_Cascade() );
88 }
89
90 auto xsinel = G4HadProcesses::InelasticXS( xsName );
91
93 for( auto & pdg : partList ) {
94
95 auto part = table->FindParticle( pdg );
96 if ( part == nullptr ) { continue; }
97
98 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
99 hadi->AddDataSet( xsinel );
100 hadi->RegisterMe( theModel );
101 if( theCascade != nullptr ) hadi->RegisterMe( theCascade );
102 if( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
103 ph->RegisterProcess(hadi, part);
104 }
105}
106
107void G4HadronicBuilder::BuildFTFQGSP_BERT(const std::vector<G4int>& partList,
108 G4bool bert, const G4String& xsName) {
109
112
113 auto theModel = new G4TheoFSGenerator("FTFQGSP");
114 auto theStringModel = new G4FTFModel();
115 theStringModel->SetFragmentationModel(new G4ExcitedStringDecay( new G4QGSMFragmentation() ) );
116 theModel->SetHighEnergyGenerator( theStringModel );
117 theModel->SetTransport( new G4GeneratorPrecompoundInterface() );
118 theModel->SetMaxEnergy( param->GetMaxEnergy() );
119
120 G4CascadeInterface* theCascade = nullptr;
121 if(bert) {
122 theCascade = new G4CascadeInterface();
123 theCascade->SetMaxEnergy( param->GetMaxEnergyTransitionFTF_Cascade() );
124 theModel->SetMinEnergy( param->GetMinEnergyTransitionFTF_Cascade() );
125 }
126
127 auto xsinel = G4HadProcesses::InelasticXS( xsName );
128
130 for( auto & pdg : partList ) {
131
132 auto part = table->FindParticle( pdg );
133 if ( part == nullptr ) { continue; }
134
135 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
136 hadi->AddDataSet( xsinel );
137 hadi->RegisterMe( theModel );
138 if( theCascade != nullptr ) hadi->RegisterMe( theCascade );
139 if( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
140 ph->RegisterProcess(hadi, part);
141 }
142}
143
144void G4HadronicBuilder::BuildQGSP_FTFP_BERT(const std::vector<G4int>& partList,
145 G4bool bert, G4bool quasiElastic,
146 const G4String& xsName) {
147
150
151 auto theTransport = new G4GeneratorPrecompoundInterface();
152
153 auto theHEModel = new G4TheoFSGenerator("QGSP");
156 theHEModel->SetTransport( theTransport );
157 theHEModel->SetHighEnergyGenerator( theQGSModel );
158 if (quasiElastic) {
159 theHEModel->SetQuasiElasticChannel(new G4QuasiElasticChannel());
160 }
161 theHEModel->SetMinEnergy( param->GetMinEnergyTransitionQGS_FTF() );
162 theHEModel->SetMaxEnergy( param->GetMaxEnergy() );
163
164 auto theLEModel = new G4TheoFSGenerator("FTFP");
165 auto theFTFModel = new G4FTFModel();
166 theFTFModel->SetFragmentationModel(new G4ExcitedStringDecay());
167 theLEModel->SetHighEnergyGenerator( theFTFModel );
168 theLEModel->SetTransport( theTransport );
169 theLEModel->SetMaxEnergy( param->GetMaxEnergyTransitionQGS_FTF() );
170
171 G4CascadeInterface* theCascade = nullptr;
172 if(bert) {
173 theCascade = new G4CascadeInterface();
174 theCascade->SetMaxEnergy( param->GetMaxEnergyTransitionFTF_Cascade() );
175 theLEModel->SetMinEnergy( param->GetMinEnergyTransitionFTF_Cascade() );
176 }
177
178 auto xsinel = G4HadProcesses::InelasticXS( xsName );
179
181 for( auto & pdg : partList ) {
182
183 auto part = table->FindParticle( pdg );
184 if ( part == nullptr ) { continue; }
185
186 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
187 hadi->AddDataSet( xsinel );
188 hadi->RegisterMe( theHEModel );
189 hadi->RegisterMe( theLEModel );
190 if(theCascade != nullptr) hadi->RegisterMe( theCascade );
191 if( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
192 ph->RegisterProcess(hadi, part);
193 }
194}
195
196void G4HadronicBuilder::BuildElastic(const std::vector<G4int>& partList) {
197
200
201 auto xsel = G4HadProcesses::ElasticXS("Glauber-Gribov");
202
203 auto elModel = new G4HadronElastic();
204 elModel->SetMaxEnergy( param->GetMaxEnergy() );
205
207 for( auto & pdg : partList ) {
208
209 auto part = table->FindParticle( pdg );
210 if ( part == nullptr ) { continue; }
211
212 auto hade = new G4HadronElasticProcess();
213 hade->AddDataSet( xsel );
214 hade->RegisterMe( elModel );
215 if( param->ApplyFactorXS() ) hade->MultiplyCrossSectionBy( param->XSFactorHadronElastic() );
216 ph->RegisterProcess(hade, part);
217 }
218}
219
221 // For hyperons, Bertini is used at low energies;
222 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
223 BuildFTFP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
224 BuildFTFP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
225}
226
228 // For hyperons, Bertini is used at low energies;
229 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
230 BuildFTFQGSP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
231 BuildFTFQGSP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
232}
233
235 // For hyperons, Bertini is used at low energies;
236 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
237 // QGSP is used at high energies in all cases.
238 BuildQGSP_FTFP_BERT(G4HadParticles::GetHyperons(), true, qElastic, "Glauber-Gribov");
239 BuildQGSP_FTFP_BERT(G4HadParticles::GetAntiHyperons(), false, qElastic, "Glauber-Gribov");
240}
241
243 BuildFTFP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
244}
245
247 BuildFTFP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
248}
249
251 BuildQGSP_FTFP_BERT(G4HadParticles::GetKaons(), true, qElastic, "Glauber-Gribov");
252}
253
255 BuildFTFP_BERT(G4HadParticles::GetLightAntiIons(), false, "AntiAGlauber");
256}
257
258//void G4HadronicBuilder::BuildAntiLightIonsQGSP_FTFP(G4bool qElastic) {
259// Note: currently QGSP cannot be applied for any ion or anti-ion!
260// BuildQGSP_FTFP_BERT(G4HadParticles::GetLightAntiIons(), false, qElastic, "AntiAGlauber");
261//}
262
264 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
265 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
266 // down to zero kinetic energy (but at very low energies, a dummy model is used
267 // that returns the projectile heavy hadron in the final state).
268 BuildFTFP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
270 }
271}
272
274 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
275 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
276 // down to zero kinetic energy (but at very low energies, a dummy model is used
277 // that returns the projectile heavy hadron in the final state).
278 BuildFTFQGSP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
280 }
281}
282
284 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
285 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
286 // down to zero kinetic energy (but at very low energies, a dummy model is used
287 // that returns the projectile heavy hadron in the final state).
288 // QGSP is used at high energies in all cases.
289 BuildQGSP_FTFP_BERT(G4HadParticles::GetBCHadrons(), false, qElastic, "Glauber-Gribov");
291 }
292}
293
295 // Geant4 does not define the decay of most of charmed and bottom hadrons.
296 // The reason is that most of these heavy hadrons have many different
297 // decay channels, with a complex dynamics, quite different from the flat
298 // phase space kinematical treatment used in Geant4 for most of hadronic decays.
299 // High-energy experiments usually use dedicated Monte Carlo Event Generators
300 // for the decays of charmed and bottom hadrons; therefore, these heavy
301 // hadrons, which are passed to Geant4 as primary tracks, have pre-assigned
302 // decays. Moreover, no charmed or bottom secondary hadrons were created
303 // in Geant4 hadronic interactions before Geant4 10.7.
304 // With the extension of Geant4 hadronic interactions to charmed and bottom
305 // hadrons, in version Geant4 10.7, we do need to define decays in Geant4
306 // for these heavy hadrons, for two reasons:
307 // 1. For testing purposes, unless we pre-assign decays of heavy hadrons
308 // (as the HEP experiments normally do by using MC Event Generators);
309 // 2. To avoid crashes (due to missing decay channels) whenever charmed or
310 // bottom secondary hadrons are produced by Geant4 hadronic interactions,
311 // even with ordinary (i.e. not heavy) hadron projectiles, because in
312 // this case we cannot (easily!) pre-assign decays to them.
313 // Given that 1. is just a convenience for testing, and 2. happens rather
314 // rarely in practice - because very few primary energetic (i.e. boosted)
315 // heavy hadrons fly enough to reach the beam pipe or the tracker and
316 // having an inelastic interaction there, and the very low probability
317 // to create a heavy hadrons from the string fragmentation in ordinary
318 // (i.e. not heavy) hadronic interactions - there is no need in practice
319 // to define accurately the decays of heavy hadrons in Geant4.
320 // So, for our practical purposes, it is enough to define very simple,
321 // "dummy" decays of charmed and bottom hadrons.
322 // Here we use a single, fully hadronic channel, with 2 or 3 or 4
323 // daughters, for each of these heavy hadrons, assigning to this single
324 // decay channel a 100% branching ratio, although in reality such a
325 // channel is one between hundreds of possible ones (and therefore its
326 // real branching ratio is typical of a few per-cent); moreover, we treat
327 // the decay without any dynamics, i.e. with a flat phase space kinematical
328 // treatment.
329 // Note that some of the charmed and bottom hadrons such as SigmaC++,
330 // SigmaC+, SigmaC0, SigmaB+, SigmaB0 and SigmaB- have one dominant
331 // decay channel (to LambdaC/B + Pion) which is already defined in Geant4.
332 // This is not the case for EtaC, JPsi and Upsilon, whose decays need to
333 // be defined here (although they decay so quickly that their hadronic
334 // interactions can be neglected, as we do for Pi0 and Sigma0).
335 // Note that our definition of the decay tables for these heavy hadrons
336 // do not interfere with the pre-assign decays of primary charmed and
337 // bottom tracks made by the HEP experiments. In fact, pre-assign decays
338 // have priority over (i.e. override) decay tables.
339 static G4bool isFirstCall = true;
340 if ( ! isFirstCall ) return;
341 isFirstCall = false;
343 for ( auto & pdg : G4HadParticles::GetBCHadrons() ) {
344 auto part = particleTable->FindParticle( pdg );
345 if ( part == nullptr ) {
346 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : ERROR ! particlePDG="
347 << pdg << " is not defined !" << G4endl;
348 continue;
349 }
350 if ( part->GetDecayTable() ) {
351 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : WARNING ! particlePDG="
352 << pdg << " has already a decay table defined !" << G4endl;
353 continue;
354 }
355 G4DecayTable* decayTable = new G4DecayTable;
356 const G4int numberDecayChannels = 1;
357 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
358 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
359 switch ( pdg ) {
360 // Charmed mesons
361 case 411 : // D+
362 mode[0] = new G4PhaseSpaceDecayChannel( "D+", 1.0, 3, "kaon-", "pi+", "pi+" );
363 break;
364 case -411 : // D-
365 mode[0] = new G4PhaseSpaceDecayChannel( "D-", 1.0, 3, "kaon+", "pi-", "pi-" );
366 break;
367 case 421 : // D0
368 mode[0] = new G4PhaseSpaceDecayChannel( "D0", 1.0, 3, "kaon-", "pi+", "pi0" );
369 break;
370 case -421 : // anti_D0
371 mode[0] = new G4PhaseSpaceDecayChannel( "anti_D0", 1.0, 3, "kaon+", "pi-", "pi0" );
372 break;
373 case 431 : // Ds+
374 mode[0] = new G4PhaseSpaceDecayChannel( "Ds+", 1.0, 3, "kaon+", "kaon-", "pi+" );
375 break;
376 case -431 : // Ds-
377 mode[0] = new G4PhaseSpaceDecayChannel( "Ds-", 1.0, 3, "kaon-", "kaon+", "pi-" );
378 break;
379 // Bottom mesons
380 case 521 : // B+
381 mode[0] = new G4PhaseSpaceDecayChannel( "B+", 1.0, 3, "anti_D0", "pi+", "pi0" );
382 break;
383 case -521 : // B-
384 mode[0] = new G4PhaseSpaceDecayChannel( "B-", 1.0, 3, "D0", "pi-", "pi0" );
385 break;
386 case 511 : // B0
387 mode[0] = new G4PhaseSpaceDecayChannel( "B0", 1.0, 3, "D-", "pi+", "pi0" );
388 break;
389 case -511 : // anti_B0
390 mode[0] = new G4PhaseSpaceDecayChannel( "anti_B0", 1.0, 3, "D+", "pi-", "pi0" );
391 break;
392 case 531 : // Bs0
393 mode[0] = new G4PhaseSpaceDecayChannel( "Bs0", 1.0, 3, "Ds-", "pi+", "pi0" );
394 break;
395 case -531 : // anti_Bs0
396 mode[0] = new G4PhaseSpaceDecayChannel( "anti_Bs0", 1.0, 3, "Ds+", "pi-", "pi0" );
397 break;
398 case 541 : // Bc+
399 mode[0] = new G4PhaseSpaceDecayChannel( "Bc+", 1.0, 2, "J/psi", "pi+" );
400 break;
401 case -541 : // Bc-
402 mode[0] = new G4PhaseSpaceDecayChannel( "Bc-", 1.0, 2, "J/psi", "pi-" );
403 break;
404 // Charmed baryons (and anti-baryons)
405 case 4122 : // lambda_c+
406 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_c+", 1.0, 3, "proton", "kaon-", "pi+" );
407 break;
408 case -4122 : // anti_lambda_c+
409 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_c+", 1.0, 3, "anti_proton", "kaon+", "pi-" );
410 break;
411 case 4232 : // xi_c+
412 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c+", 1.0, 3, "sigma+", "kaon-", "pi+" );
413 break;
414 case -4232 : // anti_xi_c+
415 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c+", 1.0, 3, "anti_sigma+", "kaon+", "pi-" );
416 break;
417 case 4132 : // xi_c0
418 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c0", 1.0, 3, "lambda", "kaon-", "pi+" );
419 break;
420 case -4132 : // anti_xi_c0
421 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c0", 1.0, 3, "anti_lambda", "kaon+", "pi-" );
422 break;
423 case 4332 : // omega_c0
424 mode[0] = new G4PhaseSpaceDecayChannel( "omega_c0", 1.0, 3, "xi0", "kaon-", "pi+" );
425 break;
426 case -4332 : // anti_omega_c0
427 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_c0", 1.0, 3, "anti_xi0", "kaon+", "pi-" );
428 break;
429 // Bottom baryons (and anti-baryons)
430 case 5122 : // lambda_b
431 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_b", 1.0, 4, "lambda_c+", "pi+", "pi-", "pi-" );
432 break;
433 case -5122 : // anti_lambda_b
434 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_b", 1.0, 4, "anti_lambda_c+", "pi-", "pi+", "pi+" );
435 break;
436 case 5232 : // xi_b0
437 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b0", 1.0, 3, "lambda_c+", "kaon-", "pi0" );
438 break;
439 case -5232 : // anti_xi_b0
440 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b0", 1.0, 3, "anti_lambda_c+", "kaon+", "pi0" );
441 break;
442 case 5132 : // xi_b-
443 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b-", 1.0, 3, "lambda_c+", "kaon-", "pi-" );
444 break;
445 case -5132 : // anti_xi_b-
446 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b-", 1.0, 3, "anti_lambda_c+", "kaon+", "pi+" );
447 break;
448 case 5332 : // omega_b-
449 mode[0] = new G4PhaseSpaceDecayChannel( "omega_b-", 1.0, 3, "xi_c+", "kaon-", "pi-" );
450 break;
451 case -5332 : // anti_omega_b-
452 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_b-", 1.0, 3, "anti_xi_c+", "kaon+", "pi+" );
453 break;
454 default :
455 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : UNKNOWN particlePDG=" << pdg << G4endl;
456 } // End of the switch
457
458 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
459 delete [] mode;
460 part->SetDecayTable( decayTable );
461 } // End of the for loop over heavy hadrons
462 // Add now the decay for etac, JPsi and Upsilon because these can be produced as
463 // secondaries in hadronic interactions, while they are not part of the heavy
464 // hadrons included in G4HadParticles::GetBCHadrons() because they live too shortly
465 // and therefore their hadronic interactions can be neglected (as we do for pi0 and sigma0).
466 if ( ! G4Etac::Definition()->GetDecayTable() ) {
467 G4DecayTable* decayTable = new G4DecayTable;
468 const G4int numberDecayChannels = 1;
469 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
470 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
471 mode[0] = new G4PhaseSpaceDecayChannel( "etac", 1.0, 3, "eta", "pi+", "pi-" );
472 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
473 delete [] mode;
474 G4Etac::Definition()->SetDecayTable( decayTable );
475 }
476 if ( ! G4JPsi::Definition()->GetDecayTable() ) {
477 G4DecayTable* decayTable = new G4DecayTable;
478 const G4int numberDecayChannels = 1;
479 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
480 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
481 mode[0] = new G4PhaseSpaceDecayChannel( "J/psi", 1.0, 3, "pi0", "pi+", "pi-" );
482 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
483 delete [] mode;
484 G4JPsi::Definition()->SetDecayTable( decayTable );
485 }
486 if ( ! G4Upsilon::Definition()->GetDecayTable() ) {
487 G4DecayTable* decayTable = new G4DecayTable;
488 const G4int numberDecayChannels = 1;
489 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
490 for ( G4int i = 0; i < numberDecayChannels; ++i ) mode[i] = nullptr;
491 mode[0] = new G4PhaseSpaceDecayChannel( "Upsilon", 1.0, 3, "eta_prime", "pi+", "pi-" );
492 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
493 delete [] mode;
494 G4Upsilon::Definition()->SetDecayTable( decayTable );
495 }
496}
497
498
500 if ( G4HadronicParameters::Instance()->EnableHyperNuclei() ) {
501 // Bertini intra-nuclear cascade model is currently not applicable for light
502 // hypernuclei, therefore FTFP is used down to zero kinetic energy (but at
503 // very low energies, a dummy model is used that simply returns the projectile
504 // hypernucleus in the final state).
505 BuildFTFP_BERT( G4HadParticles::GetHyperNuclei(), false, "Glauber-Gribov" );
506 }
507}
508
509
511 if ( G4HadronicParameters::Instance()->EnableHyperNuclei() ) {
512 // FTFP can be used down to zero kinetic energy.
513 BuildFTFP_BERT( G4HadParticles::GetHyperAntiNuclei(), false, "AntiAGlauber" );
514 }
515}
516
517
519 if ( G4HadronicParameters::Instance()->EnableHyperNuclei() ) {
521 }
522}
523
524
525void G4HadronicBuilder::BuildFTFP_INCLXX( const std::vector< G4int >& partList, const G4String& xsName ) {
528 auto theTheoFSModel = new G4TheoFSGenerator( "FTFP" );
529 auto theStringModel = new G4FTFModel;
530 theStringModel->SetFragmentationModel( new G4ExcitedStringDecay );
531 theTheoFSModel->SetHighEnergyGenerator( theStringModel );
532 theTheoFSModel->SetTransport( new G4GeneratorPrecompoundInterface );
533 theTheoFSModel->SetMaxEnergy( param->GetMaxEnergy() );
534 theTheoFSModel->SetMinEnergy( 15.0*CLHEP::GeV );
535 G4VPreCompoundModel* thePrecoModel = new G4PreCompoundModel;
536 thePrecoModel->SetMinEnergy( 0.0 );
537 thePrecoModel->SetMaxEnergy( 2.0*CLHEP::MeV );
538 G4INCLXXInterface* theINCLXXModel = new G4INCLXXInterface( thePrecoModel );
539 theINCLXXModel->SetMinEnergy( 1.0*CLHEP::MeV );
540 theINCLXXModel->SetMaxEnergy( 20.0*CLHEP::GeV );
541 auto xsinel = G4HadProcesses::InelasticXS( xsName );
543 for ( auto & pdg : partList ) {
544 auto part = table->FindParticle( pdg );
545 if ( part == nullptr ) continue;
546 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
547 hadi->AddDataSet( xsinel );
548 hadi->RegisterMe( theTheoFSModel );
549 hadi->RegisterMe( theINCLXXModel );
550 if ( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
551 ph->RegisterProcess( hadi, part );
552 }
553}
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
void Insert(G4VDecayChannel *aChannel)
Definition: G4DecayTable.cc:53
static G4Etac * Definition()
Definition: G4Etac.cc:52
static const std::vector< G4int > & GetBCHadrons()
static const std::vector< G4int > & GetAntiHyperons()
static const std::vector< G4int > & GetLightAntiIons()
static const std::vector< G4int > & GetHyperNuclei()
static const std::vector< G4int > & GetKaons()
static const std::vector< G4int > & GetHyperons()
static const std::vector< G4int > & GetHyperAntiNuclei()
static G4CrossSectionElastic * ElasticXS(const G4String &componentName)
static G4CrossSectionInelastic * InelasticXS(const G4String &componentName)
static void BuildBCHadronsFTFP_BERT()
static void BuildElastic(const std::vector< G4int > &particleList)
static void BuildHyperonsFTFP_BERT()
static void BuildKaonsQGSP_FTFP_BERT(G4bool quasiElastic)
static void BuildKaonsFTFQGSP_BERT()
static void BuildBCHadronsFTFQGSP_BERT()
static void BuildHyperonsQGSP_FTFP_BERT(G4bool quasiElastic)
static void BuildHyperonsFTFQGSP_BERT()
static void BuildDecayTableForBCHadrons()
static void BuildFTFP_INCLXX(const std::vector< G4int > &partList, const G4String &xsName)
static void BuildKaonsFTFP_BERT()
static void BuildAntiLightIonsFTFP()
static void BuildHyperAntiNucleiFTFP_BERT()
static void BuildBCHadronsQGSP_FTFP_BERT(G4bool quasiElastic)
static void BuildHyperNucleiFTFP_BERT()
static void BuildHyperNucleiFTFP_INCLXX()
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4HadronicParameters * Instance()
G4double GetMinEnergyTransitionFTF_Cascade() const
G4double GetMinEnergyTransitionQGS_FTF() const
G4double GetMaxEnergyTransitionFTF_Cascade() const
G4double XSFactorHadronInelastic() const
G4double GetMaxEnergyTransitionQGS_FTF() const
G4double XSFactorHadronElastic() const
G4double GetMaxEnergy() const
INCL++ intra-nuclear cascade.
static G4JPsi * Definition()
Definition: G4JPsi.cc:47
void SetDecayTable(G4DecayTable *aDecayTable)
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static G4PhysicsListHelper * GetPhysicsListHelper()
static G4Upsilon * Definition()
Definition: G4Upsilon.cc:46
void SetFragmentationModel(G4VStringFragmentation *aModel)