93 aPrim.
Init(aProjectileA, aProjectileZ);
97 aTarg.
Init(aTargetA, aTargetZ);
101 G4int particlesFromProjectile = 0;
102 G4int chargedFromProjectile = 0;
110 while(0==particlesFromProjectile)
118 while(x*x + y*y > 1);
119 impactParameter = std::sqrt(x*x+y*y)*(targetOuterRadius+projectileOuterRadius);
121 area = pi*(targetOuterRadius+projectileOuterRadius)*
122 (targetOuterRadius+projectileOuterRadius);
123 G4double projectileHorizon = impactParameter-targetOuterRadius;
127 if(projectileHorizon > empirical*projectileOuterRadius) {
continue; }
139 ++particlesFromProjectile;
142 ++chargedFromProjectile;
150 G4double targetHorizon = impactParameter-projectileOuterRadius;
151 G4int chargedFromTarget = 0;
152 G4int particlesFromTarget = 0;
160 ++particlesFromTarget;
175 G4LorentzVector fragment4Momentum(momentum*w, projTotEnergy*w + targetMass);
178 G4Fragment anInitialState(aTargetA+particlesFromProjectile,
179 aTargetZ+chargedFromProjectile,
184 + particlesFromTarget,
185 chargedFromProjectile
186 + chargedFromTarget);
187 anInitialState.
SetNumberOfHoles(particlesFromProjectile+particlesFromTarget,
188 chargedFromProjectile + chargedFromTarget);
198 if(particlesFromProjectile < aProjectileA)
200 G4LorentzVector residual4Momentum(momentum*(1.0-w), projTotEnergy*(1.0-w));
202 G4Fragment initialState2(aProjectileA-particlesFromProjectile,
203 aProjectileZ-chargedFromProjectile,
207 G4int pinit = (aProjectileA-particlesFromProjectile)/2;
208 G4int cinit = (aProjectileZ-chargedFromProjectile)/2;
214 theExcitationResult = theHandler->
BreakItUp(initialState2);
220 if(theExcitationResult) { nexc = theExcitationResult->size(); }
221 if(thePreCompoundResult) { npre = thePreCompoundResult->size();}
224 for(
G4int k=0; k<nexc; ++k) {
233 for(
G4int k=0; k<npre; ++k) {
241 delete thePreCompoundResult;
242 delete theExcitationResult;
std::vector< G4ReactionProduct * > G4ReactionProductVector
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
G4Nucleon * GetNextNucleon()
G4double GetOuterRadius()
void Init(G4int theA, G4int theZ)
void SetCreationTime(G4double time)
void SetNumberOfHoles(G4int valueTot, G4int valueP=0)
void SetNumberOfExcitedParticle(G4int valueTot, G4int valueP)
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
G4double GetTotalEnergy() const
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)
virtual ~G4LowEIonFragmentation()
static G4double GetNuclearMass(const G4double A, const G4double Z)
const G4ThreeVector & GetPosition() const
const G4ParticleDefinition * GetParticleType() const
G4double GetPDGCharge() const
G4int GetBaryonNumber() const
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment) final
static G4Proton * Proton()
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const