Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolarizedPEEffectModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4PolarizedPEEffectModel
33//
34// Author: Andreas Schaelicke & Karim Laihem
35//
36// Creation date: 22.02.2007
37//
38// Modifications:
39//
40// Class Description:
41//
42// Implementation of Photo electric effect
43// including polarization transfer from circularly polarised gammas
44
45// -------------------------------------------------------------------
46//
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
50
51#ifndef NOIONIZATIONAS
52
54#include "G4Electron.hh"
55#include "G4Positron.hh"
56#include "G4Gamma.hh"
57#include "Randomize.hh"
58#include "G4DataVector.hh"
59#include "G4PhysicsLogVector.hh"
63
64//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
65
66
68 const G4String& nam)
70 crossSectionCalculator(nullptr),
71 verboseLevel(0)
72{
73}
74
75//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
76
78{
79 if (crossSectionCalculator) delete crossSectionCalculator;
80}
81
82//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
83
85 const G4DataVector& dv)
86{
88 if (!crossSectionCalculator)
89 crossSectionCalculator = new G4PolarizedPEEffectCrossSection();
90}
91
92//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
93
94void G4PolarizedPEEffectModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
95 const G4MaterialCutsCouple* couple,
96 const G4DynamicParticle* dp,
97 G4double tmin,
98 G4double maxEnergy)
99{
100 // std::vector<G4DynamicParticle*>* vdp =
101 G4PEEffectFluoModel::SampleSecondaries(vdp,couple, dp, tmin, maxEnergy);
102
103 if (verboseLevel >= 1) {
104 G4cout << "G4PolarizedPEEffectModel::SampleSecondaries" << G4endl;
105 }
106
107 if(vdp && vdp->size()>0) {
108 G4double gamEnergy0 = dp->GetKineticEnergy();
109 G4double lepEnergy1 = (*vdp)[0]->GetKineticEnergy();
110 G4double sintheta = dp->GetMomentumDirection().cross((*vdp)[0]->GetMomentumDirection()).mag();
111 if (sintheta>1.) sintheta=1.;
112
113 G4StokesVector beamPol = dp->GetPolarization();
114 beamPol.SetPhoton();
115 // G4cout<<" beamPol "<<beamPol<<G4endl;
116
117 // determine interaction plane
118 G4ThreeVector nInteractionFrame =
120 (*vdp)[0]->GetMomentumDirection());
121 // G4cout<<" nInteractionFrame = "<<nInteractionFrame<<G4endl;
122 if (dp->GetMomentumDirection().cross((*vdp)[0]->GetMomentumDirection()).mag()<1.e-10) {
123 // G4cout<<" nInteractionFrame not well defined "<<G4endl;
124 // G4cout<<" choosing random interaction frame "<<G4endl;
125
127 // G4cout<<"new nInteractionFrame = "<<nInteractionFrame<<G4endl;
128 }
129 /*
130 else {
131 G4ThreeVector mom1=dp->GetMomentumDirection();
132 G4ThreeVector mom2=(*vdp)[0]->GetMomentumDirection();
133 G4cout<<" mom1 = "<<mom1<<G4endl;
134 G4cout<<" mom2 = "<<mom2<<G4endl;
135 G4ThreeVector x=mom1.cross(mom2);
136 G4cout<<" mom1 x mom2 = "<<x<<" "<<x.mag()<<G4endl;
137 G4cout<<" norm = "<<(1./x.mag()*x)<<" "<<G4endl;
138 }
139 */
140
141 // transform polarization into interaction frame
142 beamPol.InvRotateAz(nInteractionFrame,dp->GetMomentumDirection());
143
144 // calulcate polarization transfer
145 crossSectionCalculator->SetMaterial(GetCurrentElement()->GetN(), // number of nucleons
146 GetCurrentElement()->GetZ(),
147 GetCurrentElement()->GetfCoulomb());
148 crossSectionCalculator->Initialize(gamEnergy0, lepEnergy1, sintheta,
149 beamPol, G4StokesVector::ZERO);
150
151 // deterimine final state polarization
152 G4StokesVector lep1Pol = crossSectionCalculator->GetPol2();
153 // G4cout<<" lepPol "<<lep1Pol<<G4endl;
154 lep1Pol.RotateAz(nInteractionFrame,(*vdp)[0]->GetMomentumDirection());
155 (*vdp)[0]->SetPolarization(lep1Pol.p1(),
156 lep1Pol.p2(),
157 lep1Pol.p3());
158
159 // G4cout<<" lepPol "<<lep1Pol<<G4endl;
160 size_t num = vdp->size();
161 if (num!=1) G4cout<<" WARNING "<<num<<" secondaries in polarized photo electric effect not supported!\n";
162 }
163}
164
165//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
166#endif //NOIONIZATIONAS
double G4double
Definition: G4Types.hh:83
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
Hep3Vector cross(const Hep3Vector &) const
double mag() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4ThreeVector & GetPolarization() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
static G4ThreeVector GetFrame(const G4ThreeVector &, const G4ThreeVector &)
static G4ThreeVector GetRandomFrame(const G4ThreeVector &)
virtual void Initialize(G4double aGammaE, G4double aLept0E, G4double sintheta, const G4StokesVector &beamPol, const G4StokesVector &, G4int flag=0) override
void Initialise(const G4ParticleDefinition *pd, const G4DataVector &dv) override
G4PolarizedPEEffectModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="Polarized-PhotoElectric")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double p3() const
G4double p1() const
static const G4StokesVector ZERO
void InvRotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
G4double p2() const
void RotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
const G4Element * GetCurrentElement() const
Definition: G4VEmModel.hh:495
void SetMaterial(G4double A, G4double Z, G4double coul)