Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGProtonInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4SystemOfUnits.hh"
30#include "Randomize.hh"
31
34 G4Nucleus& targetNucleus )
35{
37 const G4HadProjectile *originalIncident = &aTrack;
38 if (originalIncident->GetKineticEnergy()<= 0.1)
39 {
43 return &theParticleChange;
44 }
45
46 //
47 // create the target particle
48 //
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50
51 if (originalIncident->GetKineticEnergy()/GeV < 0.01+2.*G4UniformRand()/9. )
52 {
53 SlowProton( originalIncident, targetNucleus );
54 delete originalTarget;
55 return &theParticleChange;
56 }
57
58 // Fermi motion and evaporation
59 // As of Geant3, the Fermi energy calculation had not been Done
60
61 G4double ek = originalIncident->GetKineticEnergy();
62 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
63 G4ReactionProduct modifiedOriginal;
64 modifiedOriginal = *originalIncident;
65
66 G4double tkin = targetNucleus.Cinema( ek );
67 ek += tkin;
68 modifiedOriginal.SetKineticEnergy(ek);
69 G4double et = ek + amas;
70 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
71 G4double pp = modifiedOriginal.GetMomentum().mag();
72 if (pp > 0.0) {
73 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
74 modifiedOriginal.SetMomentum( momentum * (p/pp) );
75 }
76 //
77 // calculate black track energies
78 //
79 tkin = targetNucleus.EvaporationEffects(ek);
80 ek -= tkin;
81 modifiedOriginal.SetKineticEnergy(ek);
82 et = ek + amas;
83 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
84 pp = modifiedOriginal.GetMomentum().mag();
85 if (pp > 0.0) {
86 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
87 modifiedOriginal.SetMomentum( momentum * (p/pp) );
88 }
89 const G4double cutOff = 0.1;
90 if (modifiedOriginal.GetKineticEnergy() < cutOff) {
91 SlowProton( originalIncident, targetNucleus );
92 delete originalTarget;
93 return &theParticleChange;
94 }
95
96 G4ReactionProduct currentParticle = modifiedOriginal;
97 G4ReactionProduct targetParticle;
98 targetParticle = *originalTarget;
99 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
100 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
101 G4bool incidentHasChanged = false;
102 G4bool targetHasChanged = false;
103 G4bool quasiElastic = false;
104 G4FastVector<G4ReactionProduct,256> vec; // vec will contain the sec. particles
105 G4int vecLen = 0;
106 vec.Initialize( 0 );
107
108 InitialCollision(vec, vecLen, currentParticle, targetParticle,
109 incidentHasChanged, targetHasChanged);
110
111 CalculateMomenta(vec, vecLen,
112 originalIncident, originalTarget, modifiedOriginal,
113 targetNucleus, currentParticle, targetParticle,
114 incidentHasChanged, targetHasChanged, quasiElastic);
115
116 SetUpChange( vec, vecLen,
117 currentParticle, targetParticle,
118 incidentHasChanged );
119
120 delete originalTarget;
121 return &theParticleChange;
122}
123
124
125void
126G4RPGProtonInelastic::SlowProton(const G4HadProjectile *originalIncident,
127 G4Nucleus &targetNucleus )
128{
129 const G4double A = targetNucleus.GetA_asInt(); // atomic weight
130 const G4double Z = targetNucleus.GetZ_asInt(); // atomic number
131 //
132 // calculate Q-value of reactions
133 //
134 G4double theAtomicMass = targetNucleus.AtomicMass( A, Z );
135 G4double massVec[9];
136 massVec[0] = targetNucleus.AtomicMass( A+1.0, Z+1.0 );
137 massVec[1] = 0.;
138 if (A > Z+1.0)
139 massVec[1] = targetNucleus.AtomicMass( A , Z+1.0 );
140 massVec[2] = theAtomicMass;
141 massVec[3] = 0.;
142 if (A > 1.0 && A-1.0 > Z)
143 massVec[3] = targetNucleus.AtomicMass( A-1.0, Z );
144 massVec[4] = 0.;
145 if (A > 2.0 && A-2.0 > Z)
146 massVec[4] = targetNucleus.AtomicMass( A-2.0, Z );
147 massVec[5] = 0.;
148 if (A > 3.0 && Z > 1.0 && A-3.0 > Z-1.0)
149 massVec[5] = targetNucleus.AtomicMass( A-3.0, Z-1.0 );
150 massVec[6] = 0.;
151 if (A > 1.0 && A-1.0 > Z+1.0)
152 massVec[6] = targetNucleus.AtomicMass( A-1.0, Z+1.0 );
153 massVec[7] = massVec[3];
154 massVec[8] = 0.;
155 if (A > 1.0 && Z > 1.0)
156 massVec[8] = targetNucleus.AtomicMass( A-1.0, Z-1.0 );
157
158 G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
159 G4int vecLen = 0;
160 vec.Initialize( 0 );
161
162 twoBody.NuclearReaction( vec, vecLen, originalIncident,
163 targetNucleus, theAtomicMass, massVec );
164
167
169 for( G4int i=0; i<vecLen; ++i )
170 {
171 pd = new G4DynamicParticle();
172 pd->SetDefinition( vec[i]->GetDefinition() );
173 pd->SetMomentum( vec[i]->GetMomentum() );
175 delete vec[i];
176 }
177}
178
179
180// Initial Collision
181// selects the particle types arising from the initial collision of
182// the proton and target nucleon. Secondaries are assigned to forward
183// and backward reaction hemispheres, but final state energies and
184// momenta are not calculated here.
185
186void
187G4RPGProtonInelastic::InitialCollision(G4FastVector<G4ReactionProduct,256>& vec,
188 G4int& vecLen,
189 G4ReactionProduct& currentParticle,
190 G4ReactionProduct& targetParticle,
191 G4bool& incidentHasChanged,
192 G4bool& targetHasChanged)
193{
194 G4double KE = currentParticle.GetKineticEnergy()/GeV;
195
196 G4int mult;
197 G4int partType;
198 std::vector<G4int> fsTypes;
199 G4int part1;
200 G4int part2;
201
202 G4double testCharge;
203 G4double testBaryon;
204 G4double testStrange;
205
206 // Get particle types according to incident and target types
207
208 if (targetParticle.GetDefinition() == particleDef[pro]) {
209 mult = GetMultiplicityT1(KE);
210 fsTypes = GetFSPartTypesForPP(mult, KE);
211
212 part1 = fsTypes[0];
213 part2 = fsTypes[1];
214 currentParticle.SetDefinition(particleDef[part1]);
215 targetParticle.SetDefinition(particleDef[part2]);
216 if (part1 == pro) {
217 if (part2 == neu) {
218 if (G4UniformRand() > 0.5) {
219 incidentHasChanged = true;
220 targetParticle.SetDefinition(particleDef[part1]);
221 currentParticle.SetDefinition(particleDef[part2]);
222 } else {
223 targetHasChanged = true;
224 }
225 } else if (part2 > neu && part2 < xi0) {
226 targetHasChanged = true;
227 }
228
229 } else { // neutron
230 targetHasChanged = true;
231 incidentHasChanged = true;
232 }
233
234 testCharge = 2.0;
235 testBaryon = 2.0;
236 testStrange = 0.0;
237
238 } else { // target was a neutron
239 mult = GetMultiplicityT0(KE);
240 fsTypes = GetFSPartTypesForPN(mult, KE);
241
242 part1 = fsTypes[0];
243 part2 = fsTypes[1];
244 currentParticle.SetDefinition(particleDef[part1]);
245 targetParticle.SetDefinition(particleDef[part2]);
246 if (part1 == pro) {
247 if (part2 == pro) {
248 targetHasChanged = true;
249 } else if (part2 == neu) {
250 if (G4UniformRand() > 0.5) {
251 incidentHasChanged = true;
252 targetHasChanged = true;
253 targetParticle.SetDefinition(particleDef[part1]);
254 currentParticle.SetDefinition(particleDef[part2]);
255 }
256 } else { // hyperon
257 targetHasChanged = true;
258 }
259
260 } else { // neutron
261 incidentHasChanged = true;
262 if (part2 > neu && part2 < xi0) targetHasChanged = true;
263 }
264
265 testCharge = 1.0;
266 testBaryon = 2.0;
267 testStrange = 0.0;
268 }
269
270 // Remove incident and target from fsTypes
271
272 fsTypes.erase(fsTypes.begin());
273 fsTypes.erase(fsTypes.begin());
274
275 // Remaining particles are secondaries. Put them into vec.
276
277 G4ReactionProduct* rp(0);
278 for(G4int i=0; i < mult-2; ++i ) {
279 partType = fsTypes[i];
280 rp = new G4ReactionProduct();
281 rp->SetDefinition(particleDef[partType]);
282 (G4UniformRand() < 0.5) ? rp->SetSide(-1) : rp->SetSide(1);
283 vec.SetElement(vecLen++, rp);
284 }
285
286 // Check conservation of charge, strangeness, baryon number
287
288 CheckQnums(vec, vecLen, currentParticle, targetParticle,
289 testCharge, testBaryon, testStrange);
290
291 return;
292}
double A(double temperature)
@ isAlive
@ stopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:72
void Initialize(G4int items)
Definition: G4FastVector.hh:59
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:254
void CheckQnums(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4double Q, G4double B, G4double S)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4RPGTwoBody twoBody
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4ParticleDefinition * particleDef[18]
G4int GetMultiplicityT0(G4double KE) const
G4int GetMultiplicityT1(G4double KE) const
std::vector< G4int > GetFSPartTypesForPP(G4int mult, G4double KE) const
std::vector< G4int > GetFSPartTypesForPN(G4int mult, G4double KE) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void NuclearReaction(G4FastVector< G4ReactionProduct, 4 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4Nucleus &aNucleus, const G4double theAtomicMass, const G4double *massVec)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)