Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QMDReaction Class Reference

#include <G4QMDReaction.hh>

+ Inheritance diagram for G4QMDReaction:

Public Member Functions

 G4QMDReaction ()
 
 ~G4QMDReaction ()
 
std::vector< G4QMDSystem * > GetFinalStates ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4ExcitationHandlerGetExcitationHandler ()
 
void UnUseGEM ()
 
void UseFRAG ()
 
void SetTMAX (G4int i)
 
void SetDT (G4double t)
 
void SetEF (G4double x)
 
virtual void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 61 of file G4QMDReaction.hh.

Constructor & Destructor Documentation

◆ G4QMDReaction()

G4QMDReaction::G4QMDReaction ( )

Definition at line 49 of file G4QMDReaction.cc.

50: G4HadronicInteraction("QMDModel")
51, system ( NULL )
52, deltaT ( 1 ) // in fsec (c=1)
53, maxTime ( 100 ) // will have maxTime-th time step
54, envelopF ( 1.05 ) // 10% for Peripheral reactions
55, gem ( true )
56, frag ( false )
57{
58
59 //090331
60 shenXS = new G4IonsShenCrossSection();
61 //genspaXS = new G4GeneralSpaceNNCrossSection();
62
63 pipElNucXS = new G4BGGPionElasticXS(G4PionPlus::PionPlus() );
64 pipElNucXS->BuildPhysicsTable(*(G4PionPlus::PionPlus() ) );
65
66 pimElNucXS = new G4BGGPionElasticXS(G4PionMinus::PionMinus() );
67 pimElNucXS->BuildPhysicsTable(*(G4PionMinus::PionMinus() ) );
68
69 pipInelNucXS = new G4BGGPionInelasticXS(G4PionPlus::PionPlus() );
70 pipInelNucXS->BuildPhysicsTable(*(G4PionPlus::PionPlus() ) );
71
72 pimInelNucXS = new G4BGGPionInelasticXS(G4PionMinus::PionMinus() );
73 pimInelNucXS->BuildPhysicsTable(*(G4PionMinus::PionMinus() ) );
74
75 meanField = new G4QMDMeanField();
76 collision = new G4QMDCollision();
77
78 excitationHandler = new G4ExcitationHandler;
79 excitationHandler->SetDeexChannelsType( fCombined );
80 //fEvaporation - 8 default channels
81 //fCombined - 8 default + 60 GEM
82 //fGEM - 2 default + 66 GEM
83 evaporation = new G4Evaporation;
84 excitationHandler->SetEvaporation( evaporation );
85 setEvaporationCh();
86
87 coulomb_collision_gamma_proj = 0.0;
88 coulomb_collision_rx_proj = 0.0;
89 coulomb_collision_rz_proj = 0.0;
90 coulomb_collision_px_proj = 0.0;
91 coulomb_collision_pz_proj = 0.0;
92
93 coulomb_collision_gamma_targ = 0.0;
94 coulomb_collision_rx_targ = 0.0;
95 coulomb_collision_rz_targ = 0.0;
96 coulomb_collision_px_targ = 0.0;
97 coulomb_collision_pz_targ = 0.0;
98}
void BuildPhysicsTable(const G4ParticleDefinition &) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
void SetEvaporation(G4VEvaporation *ptr, G4bool isLocal=false)
void SetDeexChannelsType(G4DeexChannelType val)
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:97
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97

◆ ~G4QMDReaction()

G4QMDReaction::~G4QMDReaction ( )

Definition at line 101 of file G4QMDReaction.cc.

102{
103 delete evaporation;
104 delete excitationHandler;
105 delete collision;
106 delete meanField;
107}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4QMDReaction::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 110 of file G4QMDReaction.cc.

111{
112 //G4cout << "G4QMDReaction::ApplyYourself" << G4endl;
113
115
116 system = new G4QMDSystem;
117
118 G4int proj_Z = 0;
119 G4int proj_A = 0;
120 const G4ParticleDefinition* proj_pd = ( const G4ParticleDefinition* ) projectile.GetDefinition();
121 if ( proj_pd->GetParticleType() == "nucleus" )
122 {
123 proj_Z = proj_pd->GetAtomicNumber();
124 proj_A = proj_pd->GetAtomicMass();
125 }
126 else
127 {
128 proj_Z = (int)( proj_pd->GetPDGCharge()/eplus );
129 proj_A = 1;
130 }
131 //G4int targ_Z = int ( target.GetZ() + 0.5 );
132 //G4int targ_A = int ( target.GetN() + 0.5 );
133 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
134 G4int targ_Z = target.GetZ_asInt();
135 G4int targ_A = target.GetA_asInt();
136 const G4ParticleDefinition* targ_pd = G4IonTable::GetIonTable()->GetIon( targ_Z , targ_A , 0.0 );
137
138
139 //G4NistManager* nistMan = G4NistManager::Instance();
140// G4Element* G4NistManager::FindOrBuildElement( targ_Z );
141
142 const G4DynamicParticle* proj_dp = new G4DynamicParticle ( proj_pd , projectile.Get4Momentum() );
143 //const G4Element* targ_ele = nistMan->FindOrBuildElement( targ_Z );
144 //G4double aTemp = projectile.GetMaterial()->GetTemperature();
145
146 //090331
147
148 G4VCrossSectionDataSet* theXS = shenXS;
149
150 G4double xs_0 = theXS->GetIsoCrossSection ( proj_dp , targ_Z , targ_A );
151
152 // When the projectile is a pion
153 if (proj_pd == G4PionPlus::PionPlus() ) {
154 xs_0 = pipElNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() ) +
155 pipInelNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() );
156 } else if (proj_pd == G4PionMinus::PionMinus() ) {
157 xs_0 = pimElNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() ) +
158 pimInelNucXS->GetElementCrossSection(proj_dp, targ_Z, projectile.GetMaterial() );
159 }
160
161 //G4double xs_0 = genspaXS->GetCrossSection ( proj_dp , targ_ele , aTemp );
162 //G4double xs_0 = theXS->GetCrossSection ( proj_dp , targ_ele , aTemp );
163 //110822
164
165 G4double bmax_0 = std::sqrt( xs_0 / pi );
166 //std::cout << "bmax_0 in fm (fermi) " << bmax_0/fermi << std::endl;
167
168 //delete proj_dp;
169
170 G4bool elastic = true;
171
172 std::vector< G4QMDNucleus* > nucleuses; // Secondary nuceluses
173 G4ThreeVector boostToReac; // ReactionSystem (CM or NN);
174 G4ThreeVector boostBackToLAB; // Reaction System to LAB;
175
176 G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ_pd->GetPDGMass()/GeV );
177 G4ThreeVector boostLABtoCM = targ4p.findBoostToCM( proj_dp->Get4Momentum()/GeV ); // CM of target and proj;
178
179 G4double p1 = proj_dp->GetMomentum().mag()/GeV/proj_A;
180 G4double m1 = proj_dp->GetDefinition()->GetPDGMass()/GeV/proj_A;
181 G4double e1 = std::sqrt( p1*p1 + m1*m1 );
182 G4double e2 = targ_pd->GetPDGMass()/GeV/targ_A;
183 G4double beta_nn = -p1 / ( e1+e2 );
184
185 G4ThreeVector boostLABtoNN ( 0. , 0. , beta_nn ); // CM of NN;
186
187 G4double beta_nncm = ( - boostLABtoCM.beta() + boostLABtoNN.beta() ) / ( 1 - boostLABtoCM.beta() * boostLABtoNN.beta() ) ;
188
189 //std::cout << targ4p << std::endl;
190 //std::cout << proj_dp->Get4Momentum()<< std::endl;
191 //std::cout << beta_nncm << std::endl;
192 G4ThreeVector boostNNtoCM( 0. , 0. , beta_nncm ); //
193 G4ThreeVector boostCMtoNN( 0. , 0. , -beta_nncm ); //
194
195 boostToReac = boostLABtoNN;
196 boostBackToLAB = -boostLABtoNN;
197
198 delete proj_dp;
199
200 G4int icounter = 0;
201 G4int icounter_max = 1024;
202 while ( elastic ) // Loop checking, 11.03.2015, T. Koi
203 {
204 icounter++;
205 if ( icounter > icounter_max ) {
206 G4cout << "Loop-counter exceeded the threshold value at " << __LINE__ << "th line of " << __FILE__ << "." << G4endl;
207 break;
208 }
209
210// impact parameter
211 //G4double bmax = 1.05*(bmax_0/fermi); // 10% for Peripheral reactions
212 G4double bmax = envelopF*(bmax_0/fermi);
213 G4double b = bmax * std::sqrt ( G4UniformRand() );
214//071112
215 //G4double b = 0;
216 //G4double b = bmax;
217 //G4double b = bmax/1.05 * 0.7 * G4UniformRand();
218
219 //G4cout << "G4QMDRESULT bmax_0 = " << bmax_0/fermi << " fm, bmax = " << bmax << " fm , b = " << b << " fm " << G4endl;
220
221 G4double plab = projectile.GetTotalMomentum()/GeV;
222 G4double elab = ( projectile.GetKineticEnergy() + proj_pd->GetPDGMass() + targ_pd->GetPDGMass() )/GeV;
223
224 calcOffSetOfCollision( b , proj_pd , targ_pd , plab , elab , bmax , boostCMtoNN );
225
226// Projectile
227 G4LorentzVector proj4pLAB = projectile.Get4Momentum()/GeV;
228
229 G4QMDGroundStateNucleus* proj(NULL);
230 if ( projectile.GetDefinition()->GetParticleType() == "nucleus"
231 || projectile.GetDefinition()->GetParticleName() == "proton"
232 || projectile.GetDefinition()->GetParticleName() == "neutron" )
233 {
234
235 proj_Z = proj_pd->GetAtomicNumber();
236 proj_A = proj_pd->GetAtomicMass();
237
238 proj = new G4QMDGroundStateNucleus( proj_Z , proj_A );
239 //proj->ShowParticipants();
240
241
242 meanField->SetSystem ( proj );
243 proj->SetTotalPotential( meanField->GetTotalPotential() );
244 proj->CalEnergyAndAngularMomentumInCM();
245
246 }
247
248// Target
249 //G4int iz = int ( target.GetZ() );
250 //G4int ia = int ( target.GetN() );
251 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
252 G4int iz = int ( target.GetZ_asInt() );
253 G4int ia = int ( target.GetA_asInt() );
254
256
257 meanField->SetSystem (targ );
258 targ->SetTotalPotential( meanField->GetTotalPotential() );
260
261 //G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ->GetNuclearMass()/GeV );
262// Boost Vector to CM
263 //boostToCM = targ4p.findBoostToCM( proj4pLAB );
264
265// Target
266 for ( G4int i = 0 ; i < targ->GetTotalNumberOfParticipant() ; i++ )
267 {
268
269 G4ThreeVector p0 = targ->GetParticipant( i )->GetMomentum();
270 G4ThreeVector r0 = targ->GetParticipant( i )->GetPosition();
271
272 G4ThreeVector p ( p0.x() + coulomb_collision_px_targ
273 , p0.y()
274 , p0.z() * coulomb_collision_gamma_targ + coulomb_collision_pz_targ );
275
276 G4ThreeVector r ( r0.x() + coulomb_collision_rx_targ
277 , r0.y()
278 , r0.z() / coulomb_collision_gamma_targ + coulomb_collision_rz_targ );
279
280 system->SetParticipant( new G4QMDParticipant( targ->GetParticipant( i )->GetDefinition() , p , r ) );
281 system->GetParticipant( i )->SetTarget();
282
283 }
284
285 G4LorentzVector proj4pCM = CLHEP::boostOf ( proj4pLAB , boostToReac );
286 G4LorentzVector targ4pCM = CLHEP::boostOf ( targ4p , boostToReac );
287
288// Projectile
289 //G4cout << "proj : " << proj << G4endl;
290 //if ( proj != NULL )
291 if ( proj_A != 1 )
292 {
293
294// projectile is nucleus
295
296 for ( G4int i = 0 ; i < proj->GetTotalNumberOfParticipant() ; i++ )
297 {
298
299 G4ThreeVector p0 = proj->GetParticipant( i )->GetMomentum();
300 G4ThreeVector r0 = proj->GetParticipant( i )->GetPosition();
301
302 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
303 , p0.y()
304 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
305
306 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
307 , r0.y()
308 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
309
310 system->SetParticipant( new G4QMDParticipant( proj->GetParticipant( i )->GetDefinition() , p , r ) );
312 }
313
314 }
315 else
316 {
317
318// projectile is particle
319
320 // avoid multiple set in "elastic" loop
321 //G4cout << "system Total Participants : " << system->GetTotalNumberOfParticipant() << ", target : " << targ->GetTotalNumberOfParticipant() << G4endl;
323 {
324
326
327 G4ThreeVector p0( 0 );
328 G4ThreeVector r0( 0 );
329
330 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
331 , p0.y()
332 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
333
334 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
335 , r0.y()
336 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
337
338 system->SetParticipant( new G4QMDParticipant( (G4ParticleDefinition*)projectile.GetDefinition() , p , r ) );
339 // This is not important becase only 1 projectile particle.
340 system->GetParticipant ( i )->SetProjectile();
341 }
342
343 }
344 //system->ShowParticipants();
345
346 delete targ;
347 delete proj;
348
349 meanField->SetSystem ( system );
350 collision->SetMeanField ( meanField );
351
352// Time Evolution
353 //std::cout << "Start time evolution " << std::endl;
354 //system->ShowParticipants();
355 for ( G4int i = 0 ; i < maxTime ; i++ )
356 {
357 //G4cout << " do Paropagate " << i << " th time step. " << G4endl;
358 meanField->DoPropagation( deltaT );
359 //system->ShowParticipants();
360 collision->CalKinematicsOfBinaryCollisions( deltaT );
361
362 if ( i / 10 * 10 == i )
363 {
364 //G4cout << i << " th time step. " << G4endl;
365 //system->ShowParticipants();
366 }
367 //system->ShowParticipants();
368 }
369 //system->ShowParticipants();
370
371
372 //std::cout << "Doing Cluster Judgment " << std::endl;
373
374 nucleuses = meanField->DoClusterJudgment();
375
376// Elastic Judgment
377
378 G4int numberOfSecondary = int ( nucleuses.size() ) + system->GetTotalNumberOfParticipant();
379
380 G4int sec_a_Z = 0;
381 G4int sec_a_A = 0;
382 const G4ParticleDefinition* sec_a_pd = NULL;
383 G4int sec_b_Z = 0;
384 G4int sec_b_A = 0;
385 const G4ParticleDefinition* sec_b_pd = NULL;
386
387 if ( numberOfSecondary == 2 )
388 {
389
390 G4bool elasticLike_system = false;
391 if ( nucleuses.size() == 2 )
392 {
393
394 sec_a_Z = nucleuses[0]->GetAtomicNumber();
395 sec_a_A = nucleuses[0]->GetMassNumber();
396 sec_b_Z = nucleuses[1]->GetAtomicNumber();
397 sec_b_A = nucleuses[1]->GetMassNumber();
398
399 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_Z == targ_Z && sec_b_A == targ_A )
400 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_Z == proj_Z && sec_b_A == proj_A ) )
401 {
402 elasticLike_system = true;
403 }
404
405 }
406 else if ( nucleuses.size() == 1 )
407 {
408
409 sec_a_Z = nucleuses[0]->GetAtomicNumber();
410 sec_a_A = nucleuses[0]->GetMassNumber();
411 sec_b_pd = system->GetParticipant( 0 )->GetDefinition();
412
413 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_pd == targ_pd )
414 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_pd == proj_pd ) )
415 {
416 elasticLike_system = true;
417 }
418
419 }
420 else
421 {
422
423 sec_a_pd = system->GetParticipant( 0 )->GetDefinition();
424 sec_b_pd = system->GetParticipant( 1 )->GetDefinition();
425
426 if ( ( sec_a_pd == proj_pd && sec_b_pd == targ_pd )
427 || ( sec_a_pd == targ_pd && sec_b_pd == proj_pd ) )
428 {
429 elasticLike_system = true;
430 }
431
432 }
433
434 if ( elasticLike_system == true )
435 {
436
437 G4bool elasticLike_energy = true;
438// Cal ExcitationEnergy
439 for ( G4int i = 0 ; i < int ( nucleuses.size() ) ; i++ )
440 {
441
442 //meanField->SetSystem( nucleuses[i] );
443 meanField->SetNucleus( nucleuses[i] );
444 //nucleuses[i]->SetTotalPotential( meanField->GetTotalPotential() );
445 //nucleuses[i]->CalEnergyAndAngularMomentumInCM();
446
447 if ( nucleuses[i]->GetExcitationEnergy()*GeV > 1.0*MeV ) elasticLike_energy = false;
448
449 }
450
451// Check Collision
452 G4bool withCollision = true;
453 if ( system->GetNOCollision() == 0 ) withCollision = false;
454
455// Final judegement for Inelasitc or Elastic;
456//
457// ElasticLike without Collision
458 //if ( elasticLike_energy == true && withCollision == false ) elastic = true; // ielst = 0
459// ElasticLike with Collision
460 //if ( elasticLike_energy == true && withCollision == true ) elastic = true; // ielst = 1
461// InelasticLike without Collision
462 //if ( elasticLike_energy == false ) elastic = false; // ielst = 2
463 if ( frag == true )
464 if ( elasticLike_energy == false ) elastic = false;
465// InelasticLike with Collision
466 if ( elasticLike_energy == false && withCollision == true ) elastic = false; // ielst = 3
467
468 }
469
470 }
471 else
472 {
473
474// numberOfSecondary != 2
475 elastic = false;
476
477 }
478
479//071115
480 //G4cout << elastic << G4endl;
481 // if elastic is true try again from sampling of impact parameter
482
483 if ( elastic == true )
484 {
485 // delete this nucleues
486 for ( std::vector< G4QMDNucleus* >::iterator
487 it = nucleuses.begin() ; it != nucleuses.end() ; it++ )
488 {
489 delete *it;
490 }
491 nucleuses.clear();
492 }
493
494 }
495
496
497// Statical Decay Phase
498
499 for ( std::vector< G4QMDNucleus* >::iterator it
500 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
501 {
502
503/*
504 G4cout << "G4QMDRESULT "
505 << (*it)->GetAtomicNumber()
506 << " "
507 << (*it)->GetMassNumber()
508 << " "
509 << (*it)->Get4Momentum()
510 << " "
511 << (*it)->Get4Momentum().vect()
512 << " "
513 << (*it)->Get4Momentum().restMass()
514 << " "
515 << (*it)->GetNuclearMass()/GeV
516 << G4endl;
517*/
518
519 meanField->SetNucleus ( *it );
520
521 if ( (*it)->GetAtomicNumber() == 0 // neutron cluster
522 || (*it)->GetAtomicNumber() == (*it)->GetMassNumber() ) // proton cluster
523 {
524 // push back system
525 for ( G4int i = 0 ; i < (*it)->GetTotalNumberOfParticipant() ; i++ )
526 {
527 G4QMDParticipant* aP = new G4QMDParticipant( ( (*it)->GetParticipant( i ) )->GetDefinition() , ( (*it)->GetParticipant( i ) )->GetMomentum() , ( (*it)->GetParticipant( i ) )->GetPosition() );
528 system->SetParticipant ( aP );
529 }
530 continue;
531 }
532
533 G4double nucleus_e = std::sqrt ( G4Pow::GetInstance()->powN ( (*it)->GetNuclearMass()/GeV , 2 ) + G4Pow::GetInstance()->powN ( (*it)->Get4Momentum().vect().mag() , 2 ) );
534 G4LorentzVector nucleus_p4CM ( (*it)->Get4Momentum().vect() , nucleus_e );
535
536// std::cout << "G4QMDRESULT nucleus deltaQ " << deltaQ << std::endl;
537
538 G4int ia = (*it)->GetMassNumber();
539 G4int iz = (*it)->GetAtomicNumber();
540
541 G4LorentzVector lv ( G4ThreeVector( 0.0 ) , (*it)->GetExcitationEnergy()*GeV + G4IonTable::GetIonTable()->GetIonMass( iz , ia ) );
542
543 G4Fragment* aFragment = new G4Fragment( ia , iz , lv );
544
546 rv = excitationHandler->BreakItUp( *aFragment );
547 G4bool notBreak = true;
548 for ( G4ReactionProductVector::iterator itt
549 = rv->begin() ; itt != rv->end() ; itt++ )
550 {
551
552 notBreak = false;
553 // Secondary from this nucleus (*it)
554 const G4ParticleDefinition* pd = (*itt)->GetDefinition();
555
556 G4LorentzVector p4 ( (*itt)->GetMomentum()/GeV , (*itt)->GetTotalEnergy()/GeV ); //in nucleus(*it) rest system
557 G4LorentzVector p4_CM = CLHEP::boostOf( p4 , -nucleus_p4CM.findBoostToCM() ); // Back to CM
558 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
559
560
561//090122
562 //theParticleChange.AddSecondary( dp );
563 if ( !( pd->GetAtomicNumber() == 4 && pd->GetAtomicMass() == 8 ) )
564 {
565 //G4cout << "pd out of notBreak loop : " << pd->GetParticleName() << G4endl;
566 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
568 }
569 else
570 {
571 //Be8 -> Alpha + Alpha + Q
572 G4ThreeVector randomized_direction( G4UniformRand() , G4UniformRand() , G4UniformRand() );
573 randomized_direction = randomized_direction.unit();
574 G4double q_decay = (*itt)->GetMass() - 2*G4Alpha::Alpha()->GetPDGMass();
575 G4double p_decay = std::sqrt ( G4Pow::GetInstance()->powN(G4Alpha::Alpha()->GetPDGMass()+q_decay/2,2) - G4Pow::GetInstance()->powN(G4Alpha::Alpha()->GetPDGMass() , 2 ) );
576 G4LorentzVector p4_a1 ( p_decay*randomized_direction , G4Alpha::Alpha()->GetPDGMass()+q_decay/2 ); //in Be8 rest system
577
578 G4LorentzVector p4_a1_Be8 = CLHEP::boostOf ( p4_a1/GeV , -p4.findBoostToCM() );
579 G4LorentzVector p4_a1_CM = CLHEP::boostOf ( p4_a1_Be8 , -nucleus_p4CM.findBoostToCM() );
580 G4LorentzVector p4_a1_LAB = CLHEP::boostOf ( p4_a1_CM , boostBackToLAB );
581
582 G4LorentzVector p4_a2 ( -p_decay*randomized_direction , G4Alpha::Alpha()->GetPDGMass()+q_decay/2 ); //in Be8 rest system
583
584 G4LorentzVector p4_a2_Be8 = CLHEP::boostOf ( p4_a2/GeV , -p4.findBoostToCM() );
585 G4LorentzVector p4_a2_CM = CLHEP::boostOf ( p4_a2_Be8 , -nucleus_p4CM.findBoostToCM() );
586 G4LorentzVector p4_a2_LAB = CLHEP::boostOf ( p4_a2_CM , boostBackToLAB );
587
588 G4DynamicParticle* dp1 = new G4DynamicParticle( G4Alpha::Alpha() , p4_a1_LAB*GeV );
589 G4DynamicParticle* dp2 = new G4DynamicParticle( G4Alpha::Alpha() , p4_a2_LAB*GeV );
592 }
593//090122
594
595/*
596 G4cout
597 << "Regist Secondary "
598 << (*itt)->GetDefinition()->GetParticleName()
599 << " "
600 << (*itt)->GetMomentum()/GeV
601 << " "
602 << (*itt)->GetKineticEnergy()/GeV
603 << " "
604 << (*itt)->GetMass()/GeV
605 << " "
606 << (*itt)->GetTotalEnergy()/GeV
607 << " "
608 << (*itt)->GetTotalEnergy()/GeV * (*itt)->GetTotalEnergy()/GeV
609 - (*itt)->GetMomentum()/GeV * (*itt)->GetMomentum()/GeV
610 << " "
611 << nucleus_p4CM.findBoostToCM()
612 << " "
613 << p4
614 << " "
615 << p4_CM
616 << " "
617 << p4_LAB
618 << G4endl;
619*/
620
621 }
622 if ( notBreak == true )
623 {
624
625 const G4ParticleDefinition* pd = G4IonTable::GetIonTable()->GetIon( (*it)->GetAtomicNumber() , (*it)->GetMassNumber(), (*it)->GetExcitationEnergy()*GeV );
626 //G4cout << "pd in notBreak loop : " << pd->GetParticleName() << G4endl;
627 G4LorentzVector p4_CM = nucleus_p4CM;
628 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
629 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
631
632 }
633
634 for ( G4ReactionProductVector::iterator itt
635 = rv->begin() ; itt != rv->end() ; itt++ )
636 {
637 delete *itt;
638 }
639 delete rv;
640
641 delete aFragment;
642
643 }
644
645
646
647 for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i++ )
648 {
649 // Secondary particles
650
651 const G4ParticleDefinition* pd = system->GetParticipant( i )->GetDefinition();
652 G4LorentzVector p4_CM = system->GetParticipant( i )->Get4Momentum();
653 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB );
654 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
656 //G4cout << "In the last theParticleChange loop : " << pd->GetParticleName() << G4endl;
657
658/*
659 G4cout << "G4QMDRESULT "
660 << "r" << i << " " << system->GetParticipant ( i ) -> GetPosition() << " "
661 << "p" << i << " " << system->GetParticipant ( i ) -> Get4Momentum()
662 << G4endl;
663*/
664
665 }
666
667 for ( std::vector< G4QMDNucleus* >::iterator it
668 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
669 {
670 delete *it; // delete nulceuse
671 }
672 nucleuses.clear();
673
674 system->Clear();
675 delete system;
676
678
679 for (G4int i = 0; i < G4int(theParticleChange.GetNumberOfSecondaries() ); i++)
680 {
681 //G4cout << "Particle : " << theParticleChange.GetSecondary(i)->GetParticle()->GetParticleDefinition()->GetParticleName() << G4endl;
682 //G4cout << "KEnergy : " << theParticleChange.GetSecondary(i)->GetParticle()->GetKineticEnergy() << G4endl;
683 //G4cout << "KEnergy : " << theParticleChange.GetSecondary(i)->GetCreatorModelType() << G4endl;
685 }
686
687 return &theParticleChange;
688
689}
@ stopAndKill
std::vector< G4ReactionProduct * > G4ReactionProductVector
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double beta() const
Definition: SpaceVectorP.cc:26
double z() const
double x() const
double y() const
double mag() const
static G4Alpha * Alpha()
Definition: G4Alpha.cc:88
G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat) final
G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat) final
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4ThreeVector GetMomentum() const
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
void SetCreatorModelType(G4int idx)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
G4double GetIonMass(G4int Z, G4int A, G4int L=0, G4int lvl=0) const
Definition: G4IonTable.cc:1517
static G4IonTable * GetIonTable()
Definition: G4IonTable.cc:170
G4int GetAtomicNumber() const
const G4String & GetParticleType() const
G4int GetAtomicMass() const
G4double GetPDGCharge() const
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:166
void SetMeanField(G4QMDMeanField *meanfield)
void CalKinematicsOfBinaryCollisions(G4double)
G4double GetTotalPotential()
void SetNucleus(G4QMDNucleus *aSystem)
void DoPropagation(G4double)
std::vector< G4QMDNucleus * > DoClusterJudgment()
void SetSystem(G4QMDSystem *aSystem)
void SetTotalPotential(G4double x)
Definition: G4QMDNucleus.hh:62
void CalEnergyAndAngularMomentumInCM()
G4ThreeVector GetPosition()
const G4ParticleDefinition * GetDefinition()
G4LorentzVector Get4Momentum()
G4ThreeVector GetMomentum()
G4QMDParticipant * GetParticipant(G4int i)
Definition: G4QMDSystem.hh:62
G4int GetTotalNumberOfParticipant()
Definition: G4QMDSystem.hh:60
void Clear()
Definition: G4QMDSystem.cc:68
void SetParticipant(G4QMDParticipant *particle)
Definition: G4QMDSystem.hh:51
G4int GetNOCollision()
Definition: G4QMDSystem.hh:65
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=nullptr, const G4Element *elm=nullptr, const G4Material *mat=nullptr)
HepLorentzVector boostOf(const HepLorentzVector &vec, const Hep3Vector &betaVector)
G4double elastic(Particle const *const p1, Particle const *const p2)

◆ GetExcitationHandler()

G4ExcitationHandler * G4QMDReaction::GetExcitationHandler ( )
inline

Definition at line 72 of file G4QMDReaction.hh.

72{return excitationHandler;};

◆ GetFinalStates()

std::vector< G4QMDSystem * > G4QMDReaction::GetFinalStates ( )

◆ ModelDescription()

void G4QMDReaction::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 849 of file G4QMDReaction.cc.

850{
851 outFile << "Lorentz covarianted Quantum Molecular Dynamics model for nucleus (particle) vs nucleus reactions\n";
852}

◆ SetDT()

void G4QMDReaction::SetDT ( G4double  t)
inline

Definition at line 78 of file G4QMDReaction.hh.

78{ deltaT = t; };

◆ SetEF()

void G4QMDReaction::SetEF ( G4double  x)
inline

Definition at line 79 of file G4QMDReaction.hh.

79{ envelopF = x; };

◆ SetTMAX()

void G4QMDReaction::SetTMAX ( G4int  i)
inline

Definition at line 77 of file G4QMDReaction.hh.

77{ maxTime = i; };

◆ UnUseGEM()

void G4QMDReaction::UnUseGEM ( )
inline

Definition at line 74 of file G4QMDReaction.hh.

74{gem = false; setEvaporationCh();};

◆ UseFRAG()

void G4QMDReaction::UseFRAG ( )
inline

Definition at line 75 of file G4QMDReaction.hh.

75{frag = true;};

The documentation for this class was generated from the following files: