87 coulomb_collision_gamma_proj = 0.0;
88 coulomb_collision_rx_proj = 0.0;
89 coulomb_collision_rz_proj = 0.0;
90 coulomb_collision_px_proj = 0.0;
91 coulomb_collision_pz_proj = 0.0;
93 coulomb_collision_gamma_targ = 0.0;
94 coulomb_collision_rx_targ = 0.0;
95 coulomb_collision_rz_targ = 0.0;
96 coulomb_collision_px_targ = 0.0;
97 coulomb_collision_pz_targ = 0.0;
104 delete excitationHandler;
165 G4double bmax_0 = std::sqrt( xs_0 / pi );
172 std::vector< G4QMDNucleus* > nucleuses;
181 G4double e1 = std::sqrt( p1*p1 + m1*m1 );
187 G4double beta_nncm = ( - boostLABtoCM.
beta() + boostLABtoNN.
beta() ) / ( 1 - boostLABtoCM.
beta() * boostLABtoNN.
beta() ) ;
195 boostToReac = boostLABtoNN;
196 boostBackToLAB = -boostLABtoNN;
201 G4int icounter_max = 1024;
205 if ( icounter > icounter_max ) {
206 G4cout <<
"Loop-counter exceeded the threshold value at " << __LINE__ <<
"th line of " << __FILE__ <<
"." <<
G4endl;
212 G4double bmax = envelopF*(bmax_0/fermi);
224 calcOffSetOfCollision( b , proj_pd , targ_pd , plab , elab , bmax , boostCMtoNN );
274 , p0.
z() * coulomb_collision_gamma_targ + coulomb_collision_pz_targ );
278 , r0.
z() / coulomb_collision_gamma_targ + coulomb_collision_rz_targ );
304 , p0.
z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
308 , r0.
z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
332 , p0.
z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
336 , r0.
z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
355 for (
G4int i = 0 ; i < maxTime ; i++ )
362 if ( i / 10 * 10 == i )
387 if ( numberOfSecondary == 2 )
390 G4bool elasticLike_system =
false;
391 if ( nucleuses.size() == 2 )
395 sec_a_A = nucleuses[0]->GetMassNumber();
396 sec_b_Z = nucleuses[1]->GetAtomicNumber();
397 sec_b_A = nucleuses[1]->GetMassNumber();
399 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_Z == targ_Z && sec_b_A == targ_A )
400 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_Z == proj_Z && sec_b_A == proj_A ) )
402 elasticLike_system =
true;
406 else if ( nucleuses.size() == 1 )
409 sec_a_Z = nucleuses[0]->GetAtomicNumber();
410 sec_a_A = nucleuses[0]->GetMassNumber();
413 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_pd == targ_pd )
414 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_pd == proj_pd ) )
416 elasticLike_system =
true;
426 if ( ( sec_a_pd == proj_pd && sec_b_pd == targ_pd )
427 || ( sec_a_pd == targ_pd && sec_b_pd == proj_pd ) )
429 elasticLike_system =
true;
434 if ( elasticLike_system ==
true )
437 G4bool elasticLike_energy =
true;
439 for (
G4int i = 0 ; i < int ( nucleuses.size() ) ; i++ )
447 if ( nucleuses[i]->GetExcitationEnergy()*GeV > 1.0*MeV ) elasticLike_energy =
false;
452 G4bool withCollision =
true;
464 if ( elasticLike_energy ==
false ) elastic =
false;
466 if ( elasticLike_energy ==
false && withCollision ==
true ) elastic =
false;
483 if ( elastic ==
true )
486 for ( std::vector< G4QMDNucleus* >::iterator
487 it = nucleuses.begin() ; it != nucleuses.end() ; it++ )
499 for ( std::vector< G4QMDNucleus* >::iterator it
500 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
521 if ( (*it)->GetAtomicNumber() == 0
522 || (*it)->GetAtomicNumber() == (*it)->GetMassNumber() )
525 for (
G4int i = 0 ; i < (*it)->GetTotalNumberOfParticipant() ; i++ )
527 G4QMDParticipant* aP =
new G4QMDParticipant( ( (*it)->GetParticipant( i ) )->GetDefinition() , ( (*it)->GetParticipant( i ) )->GetMomentum() , ( (*it)->GetParticipant( i ) )->GetPosition() );
534 G4LorentzVector nucleus_p4CM ( (*it)->Get4Momentum().vect() , nucleus_e );
538 G4int ia = (*it)->GetMassNumber();
539 G4int iz = (*it)->GetAtomicNumber();
546 rv = excitationHandler->
BreakItUp( *aFragment );
548 for ( G4ReactionProductVector::iterator itt
549 = rv->begin() ; itt != rv->end() ; itt++ )
556 G4LorentzVector p4 ( (*itt)->GetMomentum()/GeV , (*itt)->GetTotalEnergy()/GeV );
573 randomized_direction = randomized_direction.
unit();
622 if ( notBreak ==
true )
634 for ( G4ReactionProductVector::iterator itt
635 = rv->begin() ; itt != rv->end() ; itt++ )
667 for ( std::vector< G4QMDNucleus* >::iterator it
668 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
693void G4QMDReaction::calcOffSetOfCollision(
G4double b ,
702 G4double stot = std::sqrt ( etot*etot - ptot*ptot );
704 G4double pstt = std::sqrt ( ( stot*stot - ( mass_proj + mass_targ ) * ( mass_proj + mass_targ )
705 ) * ( stot*stot - ( mass_proj - mass_targ ) * ( mass_proj - mass_targ ) ) )
709 G4double eccm = stot - ( mass_proj + mass_targ );
733 G4double rmax = std::sqrt( rmax0*rmax0 + b*b );
736 G4double pcca = 1.0 - double ( zp * zt ) * ccoul / eccm / rmax - ( b / rmax )*( b / rmax );
746 G4double aas = 2.0 * eccm * b / double ( zp * zt ) / ccoul;
747 bbs = 1.0 / std::sqrt ( 1.0 + aas*aas );
748 aas1 = ( 1.0 + aas * b / rmax ) * bbs;
755 if ( 1.0 - aas1*aas1 <= 0 || 1.0 - bbs*bbs <= 0.0 )
762 G4double aat1 = aas1 / std::sqrt ( 1.0 - aas1*aas1 );
763 G4double aat2 = bbs / std::sqrt ( 1.0 - bbs*bbs );
765 thet1 = std::atan ( aat1 );
766 thet2 = std::atan ( aat2 );
770 cost = std::cos( theta );
771 sint = std::sin( theta );
774 G4double rzpr = -rmax * cost * ( mass_targ ) / ( mass_proj + mass_targ );
775 G4double rzta = rmax * cost * ( mass_proj ) / ( mass_proj + mass_targ );
782 G4double pzpc = pzcc * ( cost * pccf + sint * b / rmax );
783 G4double pxpr = pzcc * ( -sint * pccf + cost * b / rmax );
788 G4double epc = std::sqrt ( pzpc*pzpc + pxpr*pxpr + mass_proj*mass_proj );
789 G4double etc = std::sqrt ( pztc*pztc + pxta*pxta + mass_targ*mass_targ );
800 pzpr = pzpc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pzpc * betacm + epc );
801 pzta = pztc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pztc * betacm + etc );
802 epr = gammacm * ( epc + betacm * pzpc );
803 eta = gammacm * ( etc + betacm * pztc );
808 G4double gammpr = epr / ( mass_proj );
809 G4double gammta = eta / ( mass_targ );
811 pzta = pzta / double ( at );
812 pxta = pxta / double ( at );
814 pzpr = pzpr / double ( ap );
815 pxpr = pxpr / double ( ap );
823 coulomb_collision_gamma_proj = gammpr;
824 coulomb_collision_rx_proj = rxpr;
825 coulomb_collision_rz_proj = rzpr;
826 coulomb_collision_px_proj = pxpr;
827 coulomb_collision_pz_proj = pzpr;
829 coulomb_collision_gamma_targ = gammta;
830 coulomb_collision_rx_targ = rxta;
831 coulomb_collision_rz_targ = rzta;
832 coulomb_collision_px_targ = pxta;
833 coulomb_collision_pz_targ = pzta;
839void G4QMDReaction::setEvaporationCh()
851 outFile <<
"Lorentz covarianted Quantum Molecular Dynamics model for nucleus (particle) vs nucleus reactions\n";
std::vector< G4ReactionProduct * > G4ReactionProductVector
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
Hep3Vector findBoostToCM() const
G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat) final
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4ThreeVector GetMomentum() const
void SetEvaporation(G4VEvaporation *ptr, G4bool isLocal=false)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
void SetDeexChannelsType(G4DeexChannelType val)
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
void SetCreatorModelType(G4int idx)
G4HadFinalState theParticleChange
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
G4double GetIonMass(G4int Z, G4int A, G4int L=0, G4int lvl=0) const
static G4IonTable * GetIonTable()
G4int GetAtomicNumber() const
const G4String & GetParticleType() const
G4double GetPDGMass() const
G4int GetAtomicMass() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
static G4PionPlus * PionPlus()
static G4Pow * GetInstance()
G4double powN(G4double x, G4int n) const
void SetMeanField(G4QMDMeanField *meanfield)
void CalKinematicsOfBinaryCollisions(G4double)
G4double GetTotalPotential()
void SetNucleus(G4QMDNucleus *aSystem)
void DoPropagation(G4double)
std::vector< G4QMDNucleus * > DoClusterJudgment()
void SetSystem(G4QMDSystem *aSystem)
void SetTotalPotential(G4double x)
void CalEnergyAndAngularMomentumInCM()
G4ThreeVector GetPosition()
const G4ParticleDefinition * GetDefinition()
G4LorentzVector Get4Momentum()
G4ThreeVector GetMomentum()
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &outFile) const
G4QMDParticipant * GetParticipant(G4int i)
G4int GetTotalNumberOfParticipant()
void SetParticipant(G4QMDParticipant *particle)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=nullptr, const G4Element *elm=nullptr, const G4Material *mat=nullptr)
HepLorentzVector boostOf(const HepLorentzVector &vec, const Hep3Vector &betaVector)