Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsAntiBaryonInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28// GEANT4 tag $Name: not supported by cvs2svn $
29//
30//
31// G4 Physics class: G4ChipsAntiBaryonInelasticXS for gamma+A cross sections
32// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
33// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
34//
35// -------------------------------------------------------------------------------------
36// Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
37// anti-baryoninteractions. Original author: M. Kossov
38// -------------------------------------------------------------------------------------
39//
40
42#include "G4SystemOfUnits.hh"
43#include "G4DynamicParticle.hh"
45#include "G4AntiNeutron.hh"
46#include "G4AntiProton.hh"
47#include "G4AntiLambda.hh"
48#include "G4AntiSigmaPlus.hh"
49#include "G4AntiSigmaMinus.hh"
50#include "G4AntiSigmaZero.hh"
51#include "G4AntiXiMinus.hh"
52#include "G4AntiXiZero.hh"
53#include "G4AntiOmegaMinus.hh"
54
55// factory
57//
59
61{
62 lastLEN=0; // Pointer to lastArray of LowEn CS
63 lastHEN=0; // Pointer to lastArray of HighEn CS
64 lastN=0; // The last N of calculated nucleus
65 lastZ=0; // The last Z of calculated nucleus
66 lastP=0.; // Last used Cross Section Momentum
67 lastTH=0.; // Last threshold momentum
68 lastCS=0.; // Last value of the Cross Section
69 lastI=0; // The last position in the DAMDB
70 LEN = new std::vector<G4double*>;
71 HEN = new std::vector<G4double*>;
72}
73
75{
76 G4int lens=LEN->size();
77 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
78 delete LEN;
79 G4int hens=HEN->size();
80 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
81 delete HEN;
82}
83
85 const G4Element*,
86 const G4Material*)
87{
88 G4ParticleDefinition* particle = Pt->GetDefinition();
89
90 if(particle == G4AntiNeutron::AntiNeutron())
91 {
92 return true;
93 }
94 else if(particle == G4AntiProton::AntiProton())
95 {
96 return true;
97 }
98 else if(particle == G4AntiLambda::AntiLambda())
99 {
100 return true;
101 }
102 else if(particle == G4AntiSigmaPlus::AntiSigmaPlus())
103 {
104 return true;
105 }
106 else if(particle == G4AntiSigmaMinus::AntiSigmaMinus())
107 {
108 return true;
109 }
110 else if(particle == G4AntiSigmaZero::AntiSigmaZero())
111 {
112 return true;
113 }
114 else if(particle == G4AntiXiMinus::AntiXiMinus())
115 {
116 return true;
117 }
118 else if(particle == G4AntiXiZero::AntiXiZero())
119 {
120 return true;
121 }
122 else if(particle == G4AntiOmegaMinus::AntiOmegaMinus())
123 {
124 return true;
125 }
126 return false;
127}
128
129// The main member function giving the collision cross section (P is in IU, CS is in mb)
130// Make pMom in independent units ! (Now it is MeV)
132 const G4Isotope*,
133 const G4Element*,
134 const G4Material*)
135{
136 G4double pMom=Pt->GetTotalMomentum();
137 G4int tgN = A - tgZ;
138 G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
139
140 return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
141}
142
144{
145 static G4int j; // A#0f Z/N-records already tested in AMDB
146 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
147 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
148 static std::vector <G4double> colP; // Vector of last momenta for the reaction
149 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
150 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
151 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
152
153 G4bool in=false; // By default the isotope must be found in the AMDB
154 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
155 {
156 in = false; // By default the isotope haven't be found in AMDB
157 lastP = 0.; // New momentum history (nothing to compare with)
158 lastN = tgN; // The last N of the calculated nucleus
159 lastZ = tgZ; // The last Z of the calculated nucleus
160 lastI = colN.size(); // Size of the Associative Memory DB in the heap
161 j = 0; // A#0f records found in DB for this projectile
162 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
163 {
164 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
165 {
166 lastI=i; // Remember the index for future fast/last use
167 lastTH =colTH[i]; // The last THreshold (A-dependent)
168 if(pMom<=lastTH)
169 {
170 return 0.; // Energy is below the Threshold value
171 }
172 lastP =colP [i]; // Last Momentum (A-dependent)
173 lastCS =colCS[i]; // Last CrossSect (A-dependent)
174 in = true; // This is the case when the isotop is found in DB
175 // Momentum pMom is in IU ! @@ Units
176 lastCS=CalculateCrossSection(-1,j,cPDG,lastZ,lastN,pMom); // read & update
177 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
178 {
179 lastCS=0.;
180 lastTH=pMom;
181 }
182 break; // Go out of the LOOP
183 }
184 j++; // Increment a#0f records found in DB
185 }
186 if(!in) // This isotope has not been calculated previously
187 {
188 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
189 lastCS=CalculateCrossSection(0,j,cPDG,lastZ,lastN,pMom); //calculate & create
190 //if(lastCS>0.) // It means that the AMBD was initialized
191 //{
192
193 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
194 colN.push_back(tgN);
195 colZ.push_back(tgZ);
196 colP.push_back(pMom);
197 colTH.push_back(lastTH);
198 colCS.push_back(lastCS);
199 //} // M.K. Presence of H1 with high threshold breaks the syncronization
200 return lastCS*millibarn;
201 } // End of creation of the new set of parameters
202 else
203 {
204 colP[lastI]=pMom;
205 colCS[lastI]=lastCS;
206 }
207 } // End of parameters udate
208 else if(pMom<=lastTH)
209 {
210 return 0.; // Momentum is below the Threshold Value -> CS=0
211 }
212 else // It is the last used -> use the current tables
213 {
214 lastCS=CalculateCrossSection(1,j,cPDG,lastZ,lastN,pMom); // Only read and UpdateDB
215 lastP=pMom;
216 }
217 return lastCS*millibarn;
218}
219
220// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
221G4double G4ChipsAntiBaryonInelasticXS::CalculateCrossSection(G4int F, G4int I,
222 G4int, G4int targZ, G4int targN, G4double Momentum)
223{
224 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
225 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
226 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
227 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
228 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
229 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
230 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
231 static const G4int nH=224; // A#of HEN points in lnE
232 static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
233 static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
234 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
235 static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
236 G4double sigma=0.;
237 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
238 //G4double A=targN+targZ; // A of the target
239 if(F<=0) // This isotope was not the last used isotop
240 {
241 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
242 {
243 G4int sync=LEN->size();
244 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
245 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
246 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
247 }
248 else // This isotope wasn't calculated before => CREATE
249 {
250 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
251 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
252 // --- Instead of making a separate function ---
253 G4double P=THmiG; // Table threshold in GeV/c
254 for(G4int k=0; k<nL; k++)
255 {
256 lastLEN[k] = CrossSectionLin(targZ, targN, P);
257 P+=dPG;
258 }
259 G4double lP=milPG;
260 for(G4int n=0; n<nH; n++)
261 {
262 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
263 lP+=dlP;
264 }
265 // --- End of possible separate function
266 // *** The synchronization check ***
267 G4int sync=LEN->size();
268 if(sync!=I)
269 {
270 G4cerr<<"***G4QPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
271 <<", N="<<targN<<", F="<<F<<G4endl;
272 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
273 }
274 LEN->push_back(lastLEN); // remember the Low Energy Table
275 HEN->push_back(lastHEN); // remember the High Energy Table
276 } // End of creation of the new set of parameters
277 } // End of parameters udate
278 // =-------------------= NOW the Magic Formula =--------------------=
279 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
280 else if (Momentum<Pmin) // High Energy region
281 {
282 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
283 }
284 else if (Momentum<Pmax) // High Energy region
285 {
286 G4double lP=std::log(Momentum);
287 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
288 }
289 else // UHE region (calculation, not frequent)
290 {
291 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
292 sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
293 }
294 if(sigma<0.) return 0.;
295 return sigma;
296}
297
298// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
299G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
300{
301 G4double lP=std::log(P);
302 return CrossSectionFormula(tZ, tN, P, lP);
303}
304
305// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
306G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
307{
308 G4double P=std::exp(lP);
309 return CrossSectionFormula(tZ, tN, P, lP);
310}
311// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
312G4double G4ChipsAntiBaryonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
313 G4double P, G4double lP)
314{
315 G4double sigma=0.;
316 if(tZ==1 && !tN) // AntiBar-Prot interaction from G4QuasiElRatios
317 {
318 G4double ld=lP-3.5;
319 G4double ld2=ld*ld;
320 G4double ye=std::exp(lP*1.25);
321 G4double yt=std::exp(lP*0.35);
322 G4double El=80./(ye+1.);
323 G4double To=(80./yt+.3)/yt;
324 sigma=(To-El)+.2443*ld2+31.48;
325 }
326 else if(tZ==1 && tN==1)
327 {
328 G4double r=lP-3.7;
329 sigma=0.6*r*r+67.+90.*std::exp(-lP*.666);
330 }
331 else if(tZ<97 && tN<152) // General solution
332 {
333 G4double d=lP-4.2;
334 G4double sp=std::sqrt(P);
335 G4double a=tN+tZ; // A of the target
336 G4double sa=std::sqrt(a);
337 G4double a2=a*a;
338 G4double a3=a2*a;
339 G4double a2s=a2*sa;
340 G4double c=(170.+3600./a2s)/(1.+65./a2s)+40.*std::pow(a,0.712)/(1.+12.2/a)/(1.+34./a2);
341 G4double r=(170.+0.01*a3)/(1.+a3/28000.);
342 sigma=c+d*d+r/sp;
343 }
344 else
345 {
346 G4cerr<<"-Warning-G4QAntiBarNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
347 sigma=0.;
348 }
349 if(sigma<0.) return 0.;
350 return sigma;
351}
352
353G4double G4ChipsAntiBaryonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
354{
355 if(DX<=0. || N<2)
356 {
357 G4cerr<<"***G4ChipsAntiBaryonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
358 return Y[0];
359 }
360
361 G4int N2=N-2;
362 G4double d=(X-X0)/DX;
363 G4int j=static_cast<int>(d);
364 if (j<0) j=0;
365 else if(j>N2) j=N2;
366 d-=j; // excess
367 G4double yi=Y[j];
368 G4double sigma=yi+(Y[j+1]-yi)*d;
369
370 return sigma;
371}
#define G4_DECLARE_XS_FACTORY(cross_section)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
static G4AntiLambda * AntiLambda()
static G4AntiNeutron * AntiNeutron()
static G4AntiOmegaMinus * AntiOmegaMinus()
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4AntiSigmaMinus * AntiSigmaMinus()
static G4AntiSigmaPlus * AntiSigmaPlus()
static G4AntiSigmaZero * AntiSigmaZero()
static G4AntiXiMinus * AntiXiMinus()
static G4AntiXiZero * AntiXiZero()
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const