Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGNeutronInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus& targetNucleus)
37{
39 const G4HadProjectile* originalIncident = &aTrack;
40
41 // create the target particle
42 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
43
44 G4ReactionProduct modifiedOriginal;
45 modifiedOriginal = *originalIncident;
46 G4ReactionProduct targetParticle;
47 targetParticle = *originalTarget;
48 if( originalIncident->GetKineticEnergy()/GeV < 0.01 + 2.*G4UniformRand()/9. )
49 {
50 SlowNeutron(originalIncident,modifiedOriginal,targetParticle,targetNucleus );
51 delete originalTarget;
52 return &theParticleChange;
53 }
54
55 // Fermi motion and evaporation
56 // As of Geant3, the Fermi energy calculation had not been Done
57 G4double ek = originalIncident->GetKineticEnergy()/MeV;
58 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
59
60 G4double tkin = targetNucleus.Cinema( ek );
61 ek += tkin;
62 modifiedOriginal.SetKineticEnergy( ek*MeV );
63 G4double et = ek + amas;
64 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
65 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
66 if( pp > 0.0 )
67 {
68 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
69 modifiedOriginal.SetMomentum( momentum * (p/pp) );
70 }
71 //
72 // calculate black track energies
73 //
74 tkin = targetNucleus.EvaporationEffects( ek );
75 ek -= tkin;
76 modifiedOriginal.SetKineticEnergy(ek);
77 et = ek + amas;
78 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
79 pp = modifiedOriginal.GetMomentum().mag();
80 if( pp > 0.0 )
81 {
82 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
83 modifiedOriginal.SetMomentum( momentum * (p/pp) );
84 }
85 const G4double cutOff = 0.1;
86 if( modifiedOriginal.GetKineticEnergy()/MeV <= cutOff )
87 {
88 SlowNeutron( originalIncident, modifiedOriginal, targetParticle, targetNucleus );
89 delete originalTarget;
90 return &theParticleChange;
91 }
92
93 G4ReactionProduct currentParticle = modifiedOriginal;
94 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
95 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
96 G4bool incidentHasChanged = false;
97 G4bool targetHasChanged = false;
98 G4bool quasiElastic = false;
99 G4FastVector<G4ReactionProduct,256> vec; // vec will contain sec. particles
100 G4int vecLen = 0;
101 vec.Initialize( 0 );
102
103 InitialCollision(vec, vecLen, currentParticle, targetParticle,
104 incidentHasChanged, targetHasChanged);
105
106 CalculateMomenta(vec, vecLen,
107 originalIncident, originalTarget, modifiedOriginal,
108 targetNucleus, currentParticle, targetParticle,
109 incidentHasChanged, targetHasChanged, quasiElastic);
110
111 SetUpChange(vec, vecLen,
112 currentParticle, targetParticle,
113 incidentHasChanged);
114
115 delete originalTarget;
116 return &theParticleChange;
117}
118
119void
120G4RPGNeutronInelastic::SlowNeutron(const G4HadProjectile* originalIncident,
121 G4ReactionProduct& modifiedOriginal,
122 G4ReactionProduct& targetParticle,
123 G4Nucleus& targetNucleus)
124{
125 const G4double A = targetNucleus.GetA_asInt(); // atomic weight
126 const G4double Z = targetNucleus.GetZ_asInt(); // atomic number
127
128 G4double currentKinetic = modifiedOriginal.GetKineticEnergy()/MeV;
129 G4double currentMass = modifiedOriginal.GetMass()/MeV;
130 if( A < 1.5 ) // Hydrogen
131 {
132 //
133 // very simple simulation of scattering angle and energy
134 // nonrelativistic approximation with isotropic angular
135 // distribution in the cms system
136 //
137 G4double cost1, eka = 0.0;
138 while (eka <= 0.0)
139 {
140 cost1 = -1.0 + 2.0*G4UniformRand();
141 eka = 1.0 + 2.0*cost1*A + A*A;
142 }
143 G4double cost = std::min( 1.0, std::max( -1.0, (A*cost1+1.0)/std::sqrt(eka) ) );
144 eka /= (1.0+A)*(1.0+A);
145 G4double ek = currentKinetic*MeV/GeV;
146 G4double amas = currentMass*MeV/GeV;
147 ek *= eka;
148 G4double en = ek + amas;
149 G4double p = std::sqrt(std::abs(en*en-amas*amas));
150 G4double sint = std::sqrt(std::abs(1.0-cost*cost));
151 G4double phi = G4UniformRand()*twopi;
152 G4double px = sint*std::sin(phi);
153 G4double py = sint*std::cos(phi);
154 G4double pz = cost;
155 targetParticle.SetMomentum( px*GeV, py*GeV, pz*GeV );
156 G4double pxO = originalIncident->Get4Momentum().x()/GeV;
157 G4double pyO = originalIncident->Get4Momentum().y()/GeV;
158 G4double pzO = originalIncident->Get4Momentum().z()/GeV;
159 G4double ptO = pxO*pxO + pyO+pyO;
160 if( ptO > 0.0 )
161 {
162 G4double pO = std::sqrt(pxO*pxO+pyO*pyO+pzO*pzO);
163 cost = pzO/pO;
164 sint = 0.5*(std::sqrt(std::abs((1.0-cost)*(1.0+cost)))+std::sqrt(ptO)/pO);
165 G4double ph = pi/2.0;
166 if( pyO < 0.0 )ph = ph*1.5;
167 if( std::abs(pxO) > 0.000001 )ph = std::atan2(pyO,pxO);
168 G4double cosp = std::cos(ph);
169 G4double sinp = std::sin(ph);
170 px = cost*cosp*px - sinp*py+sint*cosp*pz;
171 py = cost*sinp*px + cosp*py+sint*sinp*pz;
172 pz = -sint*px + cost*pz;
173 }
174 else
175 {
176 if( pz < 0.0 )pz *= -1.0;
177 }
178 G4double pu = std::sqrt(px*px+py*py+pz*pz);
179 modifiedOriginal.SetMomentum( targetParticle.GetMomentum() * (p/pu) );
180 modifiedOriginal.SetKineticEnergy( ek*GeV );
181
182 targetParticle.SetMomentum(
183 originalIncident->Get4Momentum().vect() - modifiedOriginal.GetMomentum() );
184 G4double pp = targetParticle.GetMomentum().mag();
185 G4double tarmas = targetParticle.GetMass();
186 targetParticle.SetTotalEnergy( std::sqrt( pp*pp + tarmas*tarmas ) );
187
190 pd->SetDefinition( targetParticle.GetDefinition() );
191 pd->SetMomentum( targetParticle.GetMomentum() );
193 return;
194 }
195
196 G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
197 G4int vecLen = 0;
198 vec.Initialize( 0 );
199
200 G4double theAtomicMass = targetNucleus.AtomicMass( A, Z );
201 G4double massVec[9];
202 massVec[0] = targetNucleus.AtomicMass( A+1.0, Z );
203 massVec[1] = theAtomicMass;
204 massVec[2] = 0.;
205 if (Z > 1.0) massVec[2] = targetNucleus.AtomicMass(A, Z-1.0);
206 massVec[3] = 0.;
207 if (Z > 1.0 && A > 1.0) massVec[3] = targetNucleus.AtomicMass(A-1.0, Z-1.0 );
208 massVec[4] = 0.;
209 if (Z > 1.0 && A > 2.0 && A-2.0 > Z-1.0)
210 massVec[4] = targetNucleus.AtomicMass( A-2.0, Z-1.0 );
211 massVec[5] = 0.;
212 if (Z > 2.0 && A > 3.0 && A-3.0 > Z-2.0)
213 massVec[5] = targetNucleus.AtomicMass( A-3.0, Z-2.0 );
214 massVec[6] = 0.;
215 if (A > 1.0 && A-1.0 > Z) massVec[6] = targetNucleus.AtomicMass(A-1.0, Z);
216 massVec[7] = massVec[3];
217 massVec[8] = 0.;
218 if (Z > 2.0 && A > 1.0) massVec[8] = targetNucleus.AtomicMass( A-1.0,Z-2.0 );
219
220 twoBody.NuclearReaction(vec, vecLen, originalIncident,
221 targetNucleus, theAtomicMass, massVec );
222
225
227 for( G4int i=0; i<vecLen; ++i ) {
228 pd = new G4DynamicParticle();
229 pd->SetDefinition( vec[i]->GetDefinition() );
230 pd->SetMomentum( vec[i]->GetMomentum() );
232 delete vec[i];
233 }
234}
235
236
237// Initial Collision
238// selects the particle types arising from the initial collision of
239// the neutron and target nucleon. Secondaries are assigned to
240// forward and backward reaction hemispheres, but final state energies
241// and momenta are not calculated here.
242
243void
244G4RPGNeutronInelastic::InitialCollision(G4FastVector<G4ReactionProduct,256>& vec,
245 G4int& vecLen,
246 G4ReactionProduct& currentParticle,
247 G4ReactionProduct& targetParticle,
248 G4bool& incidentHasChanged,
249 G4bool& targetHasChanged)
250{
251 G4double KE = currentParticle.GetKineticEnergy()/GeV;
252
253 G4int mult;
254 G4int partType;
255 std::vector<G4int> fsTypes;
256 G4int part1;
257 G4int part2;
258
259 G4double testCharge;
260 G4double testBaryon;
261 G4double testStrange;
262
263 // Get particle types according to incident and target types
264
265 if (targetParticle.GetDefinition() == particleDef[neu]) {
266 mult = GetMultiplicityT1(KE);
267 fsTypes = GetFSPartTypesForNN(mult, KE);
268
269 part1 = fsTypes[0];
270 part2 = fsTypes[1];
271 currentParticle.SetDefinition(particleDef[part1]);
272 targetParticle.SetDefinition(particleDef[part2]);
273 if (part1 == pro) {
274 if (part2 == neu) {
275 if (G4UniformRand() > 0.5) {
276 incidentHasChanged = true;
277 } else {
278 targetHasChanged = true;
279 currentParticle.SetDefinition(particleDef[part2]);
280 targetParticle.SetDefinition(particleDef[part1]);
281 }
282 } else {
283 targetHasChanged = true;
284 incidentHasChanged = true;
285 }
286
287 } else { // neutron
288 if (part2 > neu && part2 < xi0) targetHasChanged = true;
289 }
290
291 testCharge = 0.0;
292 testBaryon = 2.0;
293 testStrange = 0.0;
294
295 } else { // target was a proton
296 mult = GetMultiplicityT0(KE);
297 fsTypes = GetFSPartTypesForNP(mult, KE);
298
299 part1 = fsTypes[0];
300 part2 = fsTypes[1];
301 currentParticle.SetDefinition(particleDef[part1]);
302 targetParticle.SetDefinition(particleDef[part2]);
303 if (part1 == pro) {
304 if (part2 == pro) {
305 incidentHasChanged = true;
306 } else if (part2 == neu) {
307 if (G4UniformRand() > 0.5) {
308 incidentHasChanged = true;
309 targetHasChanged = true;
310 } else {
311 currentParticle.SetDefinition(particleDef[part2]);
312 targetParticle.SetDefinition(particleDef[part1]);
313 }
314
315 } else if (part2 > neu && part2 < xi0) {
316 incidentHasChanged = true;
317 targetHasChanged = true;
318 }
319
320 } else { // neutron
321 targetHasChanged = true;
322 }
323
324 testCharge = 1.0;
325 testBaryon = 2.0;
326 testStrange = 0.0;
327 }
328
329 // if (mult == 2 && !incidentHasChanged && !targetHasChanged)
330 // quasiElastic = true;
331
332 // Remove incident and target from fsTypes
333
334 fsTypes.erase(fsTypes.begin());
335 fsTypes.erase(fsTypes.begin());
336
337 // Remaining particles are secondaries. Put them into vec.
338
339 G4ReactionProduct* rp(0);
340 for(G4int i=0; i < mult-2; ++i ) {
341 partType = fsTypes[i];
342 rp = new G4ReactionProduct();
343 rp->SetDefinition(particleDef[partType]);
344 (G4UniformRand() < 0.5) ? rp->SetSide(-1) : rp->SetSide(1);
345 vec.SetElement(vecLen++, rp);
346 }
347
348 // Check conservation of charge, strangeness, baryon number
349
350 CheckQnums(vec, vecLen, currentParticle, targetParticle,
351 testCharge, testBaryon, testStrange);
352
353 return;
354}
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
double mag() const
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
void CheckQnums(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4double Q, G4double B, G4double S)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4RPGTwoBody twoBody
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4ParticleDefinition * particleDef[18]
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4int GetMultiplicityT0(G4double KE) const
G4int GetMultiplicityT1(G4double KE) const
std::vector< G4int > GetFSPartTypesForNN(G4int mult, G4double KE) const
std::vector< G4int > GetFSPartTypesForNP(G4int mult, G4double KE) const
void NuclearReaction(G4FastVector< G4ReactionProduct, 4 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4Nucleus &aNucleus, const G4double theAtomicMass, const G4double *massVec)
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetTotalEnergy(const G4double en)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
G4double GetMass() const
const G4double pi