Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4KleinNishinaCompton.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4KleinNishinaCompton
34//
35// Author: Vladimir Ivanchenko on base of Michel Maire code
36//
37// Creation date: 15.03.2005
38//
39// Modifications:
40// 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
41// 27-03-06 Remove upper limit of cross section (V.Ivantchenko)
42//
43// Class Description:
44//
45// -------------------------------------------------------------------
46//
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49
52#include "G4SystemOfUnits.hh"
53#include "G4Electron.hh"
54#include "G4Gamma.hh"
55#include "Randomize.hh"
56#include "G4DataVector.hh"
58
59//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
60
61using namespace std;
62
64 const G4String& nam)
65 : G4VEmModel(nam)
66{
69 lowestGammaEnergy = 1.0*eV;
71}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
74
76{}
77
78//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
79
81 const G4DataVector&)
82{
84}
85
86//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
87
90 G4double GammaEnergy,
93{
94 G4double xSection = 0.0 ;
95 if ( Z < 0.9999 ) return xSection;
96 if ( GammaEnergy < 0.1*keV ) return xSection;
97 // if ( GammaEnergy > (100.*GeV/Z) ) return xSection;
98
99 static const G4double a = 20.0 , b = 230.0 , c = 440.0;
100
101 static const G4double
102 d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527 *barn, d4=-1.9798e+1*barn,
103 e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
104 f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;
105
106 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
107 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
108
109 G4double T0 = 15.0*keV;
110 if (Z < 1.5) T0 = 40.0*keV;
111
112 G4double X = max(GammaEnergy, T0) / electron_mass_c2;
113 xSection = p1Z*std::log(1.+2.*X)/X
114 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
115
116 // modification for low energy. (special case for Hydrogen)
117 if (GammaEnergy < T0) {
118 G4double dT0 = 1.*keV;
119 X = (T0+dT0) / electron_mass_c2 ;
120 G4double sigma = p1Z*log(1.+2*X)/X
121 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
122 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0);
123 G4double c2 = 0.150;
124 if (Z > 1.5) c2 = 0.375-0.0556*log(Z);
125 G4double y = log(GammaEnergy/T0);
126 xSection *= exp(-y*(c1+c2*y));
127 }
128 // G4cout << "e= " << GammaEnergy << " Z= " << Z << " cross= " << xSection << G4endl;
129 return xSection;
130}
131
132//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
133
134void G4KleinNishinaCompton::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
136 const G4DynamicParticle* aDynamicGamma,
137 G4double,
138 G4double)
139{
140 // The scattered gamma energy is sampled according to Klein - Nishina formula.
141 // The random number techniques of Butcher & Messel are used
142 // (Nuc Phys 20(1960),15).
143 // Note : Effects due to binding of atomic electrons are negliged.
144
145 G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
146
147 // extra protection
148 if(gamEnergy0 < lowestGammaEnergy) {
152 return;
153 }
154
155 G4double E0_m = gamEnergy0 / electron_mass_c2 ;
156
157 G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection();
158
159 //
160 // sample the energy rate of the scattered gamma
161 //
162
163 G4double epsilon, epsilonsq, onecost, sint2, greject ;
164
165 G4double eps0 = 1./(1. + 2.*E0_m);
166 G4double epsilon0sq = eps0*eps0;
167 G4double alpha1 = - log(eps0);
168 G4double alpha2 = 0.5*(1.- epsilon0sq);
169
170 do {
171 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) {
172 epsilon = exp(-alpha1*G4UniformRand()); // eps0**r
173 epsilonsq = epsilon*epsilon;
174
175 } else {
176 epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
177 epsilon = sqrt(epsilonsq);
178 };
179
180 onecost = (1.- epsilon)/(epsilon*E0_m);
181 sint2 = onecost*(2.-onecost);
182 greject = 1. - epsilon*sint2/(1.+ epsilonsq);
183
184 } while (greject < G4UniformRand());
185
186 //
187 // scattered gamma angles. ( Z - axis along the parent gamma)
188 //
189
190 if(sint2 < 0.0) { sint2 = 0.0; }
191 G4double cosTeta = 1. - onecost;
192 G4double sinTeta = sqrt (sint2);
193 G4double Phi = twopi * G4UniformRand();
194
195 //
196 // update G4VParticleChange for the scattered gamma
197 //
198
199 G4ThreeVector gamDirection1(sinTeta*cos(Phi), sinTeta*sin(Phi), cosTeta);
200 gamDirection1.rotateUz(gamDirection0);
201 G4double gamEnergy1 = epsilon*gamEnergy0;
202 if(gamEnergy1 > lowestGammaEnergy) {
205 } else {
209 }
210
211 //
212 // kinematic of the scattered electron
213 //
214
215 G4double eKinEnergy = gamEnergy0 - gamEnergy1;
216
217 if(eKinEnergy > DBL_MIN) {
218 G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
219 eDirection = eDirection.unit();
220
221 // create G4DynamicParticle object for the electron.
222 G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
223 fvect->push_back(dp);
224 }
225}
226
227//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
228
229
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4ParticleDefinition * theGamma
G4ParticleChangeForGamma * fParticleChange
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax)
G4KleinNishinaCompton(const G4ParticleDefinition *p=0, const G4String &nam="Klein-Nishina")
G4ParticleDefinition * theElectron
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
#define DBL_MIN
Definition: templates.hh:75