Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4IonCoulombScatteringModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4IonCoulombScatteringModel.cc
27// -------------------------------------------------------------------
28//
29// GEANT4 Class header file
30//
31// File name: G4IonCoulombScatteringModel
32//
33// Author: Cristina Consolandi
34//
35// Creation date: 05.10.2010 from G4eCoulombScatteringModel
36// & G4CoulombScatteringModel
37//
38// Class Description:
39// Single Scattering Model for
40// for protons, alpha and heavy Ions
41//
42// Reference:
43// M.J. Boschini et al. "Nuclear and Non-Ionizing Energy-Loss
44// for Coulomb ScatteredParticles from Low Energy up to Relativistic
45// Regime in Space Radiation Environment"
46// Accepted for publication in the Proceedings of the ICATPP Conference
47// on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo, 7-8
48// October, 2010, to be published by World Scientific (Singapore).
49//
50// Available for downloading at:
51// http://arxiv.org/abs/1011.4822
52//
53// -------------------------------------------------------------------
54//
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
56
57
60#include "G4SystemOfUnits.hh"
61#include "Randomize.hh"
63#include "G4Proton.hh"
65#include "G4NucleiProperties.hh"
66
67#include "G4UnitsTable.hh"
68
69//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
70
71using namespace std;
72
74 : G4VEmModel(nam),
75
76 cosThetaMin(1.0),
77 isInitialised(false)
78{
82
83 pCuts=0;
86 currentCouple = 0;
87
88 lowEnergyLimit = 100*eV;
89 recoilThreshold = 0.*eV;
90 heavycorr =0;
91 particle = 0;
92 mass=0;
94
96
97}
98
99
100//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
101
103{ delete ioncross;}
104
105//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
106
108 const G4DataVector& )
109{
110 SetupParticle(p);
111 currentCouple = 0;
115
117
118
119 if(!isInitialised) {
120 isInitialised = true;
122 }
123}
124
125//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
126
128 const G4ParticleDefinition* p,
129 G4double kinEnergy,
130 G4double Z,
131 G4double,
132 G4double cutEnergy,
133 G4double)
134{
135
136 SetupParticle(p);
137
138 G4double cross =0.0;
139 if(kinEnergy < lowEnergyLimit) return cross;
140
142
143 G4int iz = G4int(Z);
144
145 //from lab to pCM & mu_rel of effective particle
146 ioncross->SetupKinematic(kinEnergy, cutEnergy,iz);
147
148
149 ioncross->SetupTarget(Z, kinEnergy, heavycorr);
150
151 cross = ioncross->NuclearCrossSection();
152
153//cout<< "..........cross "<<G4BestUnit(cross,"Surface") <<endl;
154 return cross;
155}
156
157//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
158
160 std::vector<G4DynamicParticle*>* fvect,
161 const G4MaterialCutsCouple* couple,
162 const G4DynamicParticle* dp,
163 G4double cutEnergy,
164 G4double)
165{
166 G4double kinEnergy = dp->GetKineticEnergy();
167
168 if(kinEnergy < lowEnergyLimit) return;
169
170 DefineMaterial(couple);
171
173
174 // Choose nucleus
176 kinEnergy,cutEnergy,kinEnergy);
177
179 G4int iz = G4int(Z);
182
183
184
185 G4double cross= ComputeCrossSectionPerAtom(particle,kinEnergy, Z,
186 kinEnergy, cutEnergy, kinEnergy) ;
187 if(cross == 0.0) { return; }
188
189 //scattering angle, z1 == (1-cost)
191 if(z1 > 2.0) { z1 = 2.0; }
192 else if(z1 < 0.0) { z1 = 0.0; }
193
194 G4double cost = 1.0 - z1;
195 G4double sint = sqrt(z1*(1.0 + cost));
196 G4double phi = twopi * G4UniformRand();
197
198
199 // kinematics in the Lab system
200 G4double etot = kinEnergy + mass;
201 G4double mom2= kinEnergy*(kinEnergy+2.0*mass);
202 G4double ptot = sqrt(mom2);
203
204 //CM particle 1
205 G4double bet = ptot/(etot + mass2);
206 G4double gam = 1.0/sqrt((1.0 - bet)*(1.0 + bet));
207
208 //CM
209 G4double momCM2= ioncross->GetMomentum2();
210 G4double momCM =std::sqrt(momCM2);
211 //energy & momentum after scattering of incident particle
212 G4double pxCM = momCM*sint*cos(phi);
213 G4double pyCM = momCM*sint*sin(phi);
214 G4double pzCM = momCM*cost;
215 G4double eCM = sqrt(momCM2 + mass*mass);
216
217 //CM--->Lab
218 G4ThreeVector v1(pxCM , pyCM, gam*(pzCM + bet*eCM));
220
221 G4ThreeVector newDirection = v1.unit();
222 newDirection.rotateUz(dir);
223
225
226 // V.Ivanchenko fix of final energies after scattering
227 // recoil.......................................
228 //G4double trec =(1.0 - cost)* mass2*(etot*etot - mass*mass )/
229 // (mass*mass + mass2*mass2+ 2.*mass2*etot);
230 //G4double finalT = kinEnergy - trec;
231
232 // new computation
233 G4double finalT = gam*(eCM + bet*pzCM) - mass;
234 G4double trec = kinEnergy - finalT;
235
236 if(finalT <= lowEnergyLimit) {
237 trec = kinEnergy;
238 finalT = 0.0;
239 } else if(trec < 0.0) {
240 trec = 0.0;
241 finalT = kinEnergy;
242 }
243
245
247 if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]);
248
249 //G4cout<<" tcut eV "<<tcut/eV<<endl;
250 }
251
252 if(trec > tcut) {
253 G4ParticleDefinition* ion = theParticleTable->GetIon(iz, ia, 0.0);
254 G4double plab = sqrt(finalT*(finalT + 2.0*mass));
255 G4ThreeVector p2 = (ptot*dir - plab*newDirection).unit();
256 G4DynamicParticle* newdp = new G4DynamicParticle(ion, p2, trec);
257 fvect->push_back(newdp);
258 } else if(trec > 0.0) {
261 }
262
263
264}
265
266//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
267
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition: G4Element.hh:131
void Initialise(const G4ParticleDefinition *, G4double cosThetaLim)
void SetupTarget(G4double Z, G4double kinEnergy, G4int heavycorr)
void SetupKinematic(G4double kinEnergy, G4double cut, G4int iz)
G4ParticleChangeForGamma * fParticleChange
const G4ParticleDefinition * particle
const std::vector< G4double > * pCuts
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
const G4ParticleDefinition * theProton
G4IonCoulombScatteringModel(const G4String &nam="IonCoulombScattering")
void DefineMaterial(const G4MaterialCutsCouple *)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
const G4MaterialCutsCouple * currentCouple
void SetupParticle(const G4ParticleDefinition *)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax)
static G4NistManager * Instance()
static G4double GetNuclearMass(const G4double A, const G4double Z)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
static G4ParticleTable * GetParticleTable()
G4ParticleDefinition * GetIon(G4int atomicNumber, G4int atomicMass, G4double excitationEnergy)
const std::vector< G4double > * GetEnergyCutsVector(size_t pcIdx) const
static G4ProductionCutsTable * GetProductionCutsTable()
static G4Proton * Proton()
Definition: G4Proton.cc:93
G4double PolarAngleLimit() const
Definition: G4VEmModel.hh:550
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
G4int SelectIsotopeNumber(const G4Element *)
Definition: G4VEmModel.hh:478
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:377
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)