Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ConvergenceTester.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Convergence Tests for Monte Carlo results.
29//
30// Reference
31// MCNP(TM) -A General Monte Carlo N-Particle Transport Code
32// Version 4B
33// Judith F. Briesmeister, Editor
34// LA-12625-M, Issued: March 1997, UC 705 and UC 700
35// CHAPTER 2. GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
36// VI. ESTIMATION OF THE MONTE CARLO PRECISION
37//
38// Positives numbers are assumed for inputs
39//
40// Koi, Tatsumi (SLAC/SCCS)
41//
42
44
46 : n(0), sum(0.), mean(0.), var(0.), sd(0.), r(0.), efficiency(0.),
47 r2eff(0.), r2int(0.), shift(0.), vov(0.), fom(0.), largest(0.),
48 largest_score_happened(0), mean_1(0.), var_1(0.), sd_1(0.), r_1(0.),
49 shift_1(0.), vov_1(0.), fom_1(0.), noBinOfHistory(16), slope(0.),
50 noBinOfPDF(10), minimizer(0), noPass(0), noTotal(8)
51{
52 nonzero_histories.clear();
53 largest_scores.clear();
54 largest_scores.push_back( 0.0 );
55
56 history_grid.resize( noBinOfHistory , 0 );
57 mean_history.resize( noBinOfHistory , 0.0 );
58 var_history.resize( noBinOfHistory , 0.0 );
59 sd_history.resize( noBinOfHistory , 0.0 );
60 r_history.resize( noBinOfHistory , 0.0 );
61 vov_history.resize( noBinOfHistory , 0.0 );
62 fom_history.resize( noBinOfHistory , 0.0 );
63 shift_history.resize( noBinOfHistory , 0.0 );
64 e_history.resize( noBinOfHistory , 0.0 );
65 r2eff_history.resize( noBinOfHistory , 0.0 );
66 r2int_history.resize( noBinOfHistory , 0.0 );
67
68 timer = new G4Timer();
69 timer->Start();
70 cpu_time.clear();
71 cpu_time.push_back( 0.0 );
72}
73
74
75
77{
78 delete timer;
79}
80
81
82
84{
85
86 //G4cout << x << G4endl;
87
88 timer->Stop();
89 cpu_time.push_back( timer->GetSystemElapsed() + timer->GetUserElapsed() );
90
91 if ( x == 0.0 )
92 {
93 }
94 else
95 {
96 nonzero_histories.insert( std::pair< G4int , G4double > ( n , x ) );
97 if ( x > largest_scores.back() )
98 {
99// Following serch should become faster if begin from bottom.
100 std::vector< G4double >::iterator it;
101 for ( it = largest_scores.begin() ; it != largest_scores.end() ; it++ )
102 {
103 if ( x > *it )
104 {
105 largest_scores.insert( it , x );
106 break;
107 }
108 }
109
110 if ( largest_scores.size() > 201 )
111 {
112 largest_scores.pop_back();
113 }
114 //G4cout << largest_scores.size() << " " << largest_scores.front() << " " << largest_scores.back() << G4endl;
115 }
116 sum += x;
117 }
118
119 n++;
120 return;
121}
122
123
124
125void G4ConvergenceTester::calStat()
126{
127
128
129 efficiency = double( nonzero_histories.size() ) / n;
130
131 mean = sum / n;
132
133 G4double sum_x2 = 0.0;
134 var = 0.0;
135 shift = 0.0;
136 vov = 0.0;
137
138 G4double xi;
139 std::map< G4int , G4double >::iterator it;
140 for ( it = nonzero_histories.begin() ; it != nonzero_histories.end() ; it++ )
141 {
142 xi = it->second;
143 sum_x2 += xi * xi;
144 var += ( xi - mean ) * ( xi - mean );
145 shift += ( xi - mean ) * ( xi - mean ) * ( xi - mean );
146 vov += ( xi - mean ) * ( xi - mean ) * ( xi - mean ) * ( xi - mean );
147 }
148
149 var += ( n - nonzero_histories.size() ) * mean * mean;
150 shift += ( n - nonzero_histories.size() ) * mean * mean * mean * ( -1 );
151 vov += ( n - nonzero_histories.size() ) * mean * mean * mean * mean;
152
153 vov = vov / ( var * var ) - 1.0 / n;
154
155 var = var/(n-1);
156
157 sd = std::sqrt ( var );
158
159 r = sd / mean / std::sqrt ( G4double(n) );
160
161 r2eff = ( 1 - efficiency ) / ( efficiency * n );
162 r2int = sum_x2 / ( sum * sum ) - 1 / ( efficiency * n );
163
164 shift = shift / ( 2 * var * n );
165
166 fom = 1 / (r*r) / cpu_time.back();
167
168// Find Largest History
169 //G4double largest = 0.0;
170 largest = 0.0;
171 largest_score_happened = 0;
172 G4double spend_time_of_largest = 0.0;
173 for ( it = nonzero_histories.begin() ; it != nonzero_histories.end() ; it++ )
174 {
175 if ( std::abs ( it->second ) > largest )
176 {
177 largest = it->second;
178 largest_score_happened = it->first;
179 spend_time_of_largest = cpu_time [ it->first+1 ] - cpu_time [ it->first ];
180 }
181 }
182
183 mean_1 = 0.0;
184 var_1 = 0.0;
185 shift_1 = 0.0;
186 vov_1 = 0.0;
187 sd_1 = 0.0;
188 r_1 = 0.0;
189 vov_1 = 0.0;
190
191// G4cout << "The largest history = " << largest << G4endl;
192
193 mean_1 = ( sum + largest ) / ( n + 1 );
194
195 for ( it = nonzero_histories.begin() ; it != nonzero_histories.end() ; it++ )
196 {
197 xi = it->second;
198 var_1 += ( xi - mean_1 ) * ( xi - mean_1 );
199 shift_1 += ( xi - mean_1 ) * ( xi - mean_1 ) * ( xi - mean_1 );
200 vov_1 += ( xi - mean_1 ) * ( xi - mean_1 ) * ( xi - mean_1 ) * ( xi - mean_1 );
201 }
202 xi = largest;
203 var_1 += ( xi - mean_1 ) * ( xi - mean_1 );
204 shift_1 += ( xi - mean_1 ) * ( xi - mean_1 ) * ( xi - mean_1 );
205 vov_1 += ( xi - mean_1 ) * ( xi - mean_1 ) * ( xi - mean_1 ) * ( xi - mean_1 );
206
207 var_1 += ( n - nonzero_histories.size() ) * mean_1 * mean_1;
208 shift_1 += ( n - nonzero_histories.size() ) * mean_1 * mean_1 * mean_1 * ( -1 );
209 vov_1 += ( n - nonzero_histories.size() ) * mean_1 * mean_1 * mean_1 * mean_1;
210
211 vov_1 = vov_1 / ( var_1 * var_1 ) - 1.0 / ( n + 1 );
212
213 var_1 = var_1 / n ;
214
215 sd_1 = std::sqrt ( var_1 );
216
217 r_1 = sd_1 / mean_1 / std::sqrt ( G4double(n + 1) );
218
219 shift_1 = shift_1 / ( 2 * var_1 * ( n + 1 ) );
220
221 fom_1 = 1 / ( r * r ) / ( cpu_time.back() + spend_time_of_largest );
222
223 if ( nonzero_histories.size() < 500 )
224 {
225 G4cout << "Number of non zero history too small to calcuarte SLOPE" << G4endl;
226 }
227 else
228 {
229 G4int i = int ( nonzero_histories.size() );
230
231 // 5% criterion
232 G4int j = int ( i * 0.05 );
233 while ( int( largest_scores.size() ) > j )
234 {
235 largest_scores.pop_back();
236 }
237 calc_slope_fit( largest_scores );
238 }
239
240 calc_grid_point_of_history();
241 calc_stat_history();
242}
243
244
245
246void G4ConvergenceTester::calc_grid_point_of_history()
247{
248
249// histroy_grid [ 0,,,15 ]
250// history_grid [0] 1/16 ,,, history_grid [15] 16/16
251// if number of event is x then history_grid [15] become x-1.
252// 16 -> noBinOfHisotry
253
254 G4int i;
255 for ( i = 1 ; i <= noBinOfHistory ; i++ )
256 {
257 history_grid [ i-1 ] = int ( n / ( double( noBinOfHistory ) ) * i - 0.1 );
258 //G4cout << "history_grid " << i-1 << " " << history_grid [ i-1 ] << G4endl;
259 }
260
261}
262
263
264
265void G4ConvergenceTester::calc_stat_history()
266{
267// G4cout << "i/16 till_ith mean var sd r vov fom shift e r2eff r2int" << G4endl;
268
269 G4int i;
270 for ( i = 1 ; i <= noBinOfHistory ; i++ )
271 {
272
273 G4int ith = history_grid [ i-1 ];
274
275 G4int nonzero_till_ith = 0;
276 G4double xi;
277 G4double mean_till_ith = 0.0;
278 std::map< G4int , G4double >::iterator it;
279
280 for ( it = nonzero_histories.begin() ; it !=nonzero_histories.end() ; it++ )
281 {
282 if ( it->first <= ith )
283 {
284 xi = it->second;
285 mean_till_ith += xi;
286 nonzero_till_ith++;
287 }
288 }
289
290 mean_till_ith = mean_till_ith / ( ith+1 );
291 mean_history [ i-1 ] = mean_till_ith;
292
293 G4double sum_x2_till_ith = 0.0;
294 G4double var_till_ith = 0.0;
295 G4double vov_till_ith = 0.0;
296 G4double shift_till_ith = 0.0;
297
298 for ( it = nonzero_histories.begin() ; it !=nonzero_histories.end() ; it++ )
299 {
300 if ( it->first <= ith )
301 {
302 xi = it->second;
303 sum_x2_till_ith += xi * xi;
304 var_till_ith += ( xi - mean_till_ith ) * ( xi - mean_till_ith );
305 shift_till_ith += ( xi - mean_till_ith ) * ( xi - mean_till_ith ) * ( xi - mean_till_ith );
306 vov_till_ith += ( xi - mean_till_ith ) * ( xi - mean_till_ith ) * ( xi - mean_till_ith ) * ( xi - mean_till_ith );
307 }
308 }
309
310 var_till_ith += ( (ith+1) - nonzero_till_ith ) * mean_till_ith * mean_till_ith;
311
312 vov_till_ith += ( (ith+1) - nonzero_till_ith ) * mean_till_ith * mean_till_ith * mean_till_ith * mean_till_ith ;
313 vov_till_ith = vov_till_ith / ( var_till_ith * var_till_ith ) - 1.0 / (ith+1);
314 vov_history [ i-1 ] = vov_till_ith;
315
316 var_till_ith = var_till_ith / ( ith+1 - 1 );
317 var_history [ i-1 ] = var_till_ith;
318 sd_history [ i-1 ] = std::sqrt( var_till_ith );
319 r_history [ i-1 ] = std::sqrt( var_till_ith ) / mean_till_ith / std::sqrt ( 1.0*(ith+1) );
320
321 fom_history [ i-1 ] = 1 / ( r_history [ i-1 ] * r_history [ i-1 ] ) / cpu_time [ ith ];
322
323 shift_till_ith += ( (ith+1) - nonzero_till_ith ) * mean_till_ith * mean_till_ith * mean_till_ith * ( -1 );
324 shift_till_ith = shift_till_ith / ( 2 * var_till_ith * (ith+1) );
325 shift_history [ i-1 ] = shift_till_ith;
326
327 e_history [ i-1 ] = 1.0*nonzero_till_ith / (ith+1);
328 r2eff_history [ i-1 ] = ( 1 - e_history [ i-1 ] ) / ( e_history [ i-1 ] * (ith+1) );
329
330 G4double sum_till_ith = mean_till_ith * (ith+1);
331 r2int_history [ i-1 ] = ( sum_x2_till_ith ) / ( sum_till_ith * sum_till_ith ) - 1 / ( e_history [ i-1 ] * (ith+1) );
332
333 }
334
335}
336
337
338
340{
341 calStat();
342
343 G4cout << "EFFICIENCY = " << efficiency << G4endl;
344 G4cout << "MEAN = " << mean << G4endl;
345 G4cout << "VAR = " << var << G4endl;
346 G4cout << "SD = " << sd << G4endl;
347 G4cout << "R = "<< r << G4endl;
348 G4cout << "SHIFT = "<< shift << G4endl;
349 G4cout << "VOV = "<< vov << G4endl;
350 G4cout << "FOM = "<< fom << G4endl;
351
352 G4cout << "THE LARGEST SCORE = " << largest << " and it happend at " << largest_score_happened << "th event" << G4endl;
353 G4cout << "Affected Mean = " << mean_1 << " and its ratio to orignal is " << mean_1/mean << G4endl;
354 G4cout << "Affected VAR = " << var_1 << " and its ratio to orignal is " << var_1/var << G4endl;
355 G4cout << "Affected R = " << r_1 << " and its ratio to orignal is " << r_1/r << G4endl;
356 G4cout << "Affected SHIFT = " << shift_1 << " and its ratio to orignal is " << shift_1/shift << G4endl;
357 G4cout << "Affected FOM = " << fom_1 << " and its ratio to orignal is " << fom_1/fom << G4endl;
358
359 check_stat_history();
360
361// check SLOPE and output result
362 if ( slope >= 3 )
363 {
364 noPass++;
365 G4cout << "SLOPE is large enough" << G4endl;
366 }
367 else
368 {
369 G4cout << "SLOPE is not large enough" << G4endl;
370 }
371
372 G4cout << "This result passes " << noPass << " / "<< noTotal << " Convergence Test." << G4endl;
373 G4cout << G4endl;
374
375}
376
378{
379 G4cout << "i/" << noBinOfHistory << " till_ith mean var sd r vov fom shift e r2eff r2int" << G4endl;
380 for ( G4int i = 1 ; i <= noBinOfHistory ; i++ )
381 {
382 G4cout << i << " "
383 << history_grid [ i-1 ] << " "
384 << mean_history [ i-1 ] << " "
385 << var_history [ i-1 ] << " "
386 << sd_history [ i-1 ] << " "
387 << r_history [ i-1 ] << " "
388 << vov_history [ i-1 ] << " "
389 << fom_history [ i-1 ] << " "
390 << shift_history [ i-1 ] << " "
391 << e_history [ i-1 ] << " "
392 << r2eff_history [ i-1 ] << " "
393 << r2int_history [ i-1 ] << " "
394 << G4endl;
395 }
396}
397
398void G4ConvergenceTester::check_stat_history()
399{
400
401// 1 sigma rejection for null hypothesis
402
403 std::vector<G4double> first_ally;
404 std::vector<G4double> second_ally;
405
406// use 2nd half of hisories
407 G4int N = mean_history.size() / 2;
408 G4int i;
409
410 G4double pearson_r;
411 G4double t;
412
413 first_ally.resize( N );
414 second_ally.resize( N );
415
416// Mean
417
418 for ( i = 0 ; i < N ; i++ )
419 {
420 first_ally [ i ] = history_grid [ N + i ];
421 second_ally [ i ] = mean_history [ N + i ];
422 }
423
424 pearson_r = calc_Pearson_r ( N , first_ally , second_ally );
425 t = pearson_r * std::sqrt ( ( N - 2 ) / ( 1 - pearson_r * pearson_r ) );
426
427 if ( t < 0.429318 ) // Student t of (Degree of freedom = N-2 )
428 {
429 G4cout << "MEAN distribution is RANDOM" << G4endl;
430 noPass++;
431 }
432 else
433 {
434 G4cout << "MEAN distribution is not RANDOM" << G4endl;
435 }
436
437
438// R
439
440 for ( i = 0 ; i < N ; i++ )
441 {
442 first_ally [ i ] = 1.0 / std::sqrt ( G4double(history_grid [ N + i ]) );
443 second_ally [ i ] = r_history [ N + i ];
444 }
445
446 pearson_r = calc_Pearson_r ( N , first_ally , second_ally );
447 t = pearson_r * std::sqrt ( ( N - 2 ) / ( 1 - pearson_r * pearson_r ) );
448
449 if ( t > 1.090546 )
450 {
451 G4cout << "r follows 1/std::sqrt(N)" << G4endl;
452 noPass++;
453 }
454 else
455 {
456 G4cout << "r does not follow 1/std::sqrt(N)" << G4endl;
457 }
458
459 if ( is_monotonically_decrease( second_ally ) == true )
460 {
461 G4cout << "r is monotonically decrease " << G4endl;
462 }
463 else
464 {
465 G4cout << "r is NOT monotonically decrease " << G4endl;
466 }
467
468 if ( r_history.back() < 0.1 )
469 {
470 G4cout << "r is less than 0.1. r = " << r_history.back() << G4endl;
471 noPass++;
472 }
473 else
474 {
475 G4cout << "r is NOT less than 0.1. r = " << r_history.back() << G4endl;
476 }
477
478
479// VOV
480 for ( i = 0 ; i < N ; i++ )
481 {
482 first_ally [ i ] = 1.0 / history_grid [ N + i ];
483 second_ally [ i ] = vov_history [ N + i ];
484 }
485
486 pearson_r = calc_Pearson_r ( N , first_ally , second_ally );
487 t = pearson_r * std::sqrt ( ( N - 2 ) / ( 1 - pearson_r * pearson_r ) );
488
489 if ( t > 1.090546 )
490 {
491 G4cout << "VOV follows 1/std::sqrt(N)" << G4endl;
492 noPass++;
493 }
494 else
495 {
496 G4cout << "VOV does not follow 1/std::sqrt(N)" << G4endl;
497 }
498
499 if ( is_monotonically_decrease( second_ally ) == true )
500 {
501 G4cout << "VOV is monotonically decrease " << G4endl;
502 }
503 else
504 {
505 G4cout << "VOV is NOT monotonically decrease " << G4endl;
506 }
507
508// FOM
509
510 for ( i = 0 ; i < N ; i++ )
511 {
512 first_ally [ i ] = history_grid [ N + i ];
513 second_ally [ i ] = fom_history [ N + i ];
514 }
515
516 pearson_r = calc_Pearson_r ( N , first_ally , second_ally );
517 t = pearson_r * std::sqrt ( ( N - 2 ) / ( 1 - pearson_r * pearson_r ) );
518
519 if ( t < 0.429318 )
520 {
521 G4cout << "FOM distribution is RANDOM" << G4endl;
522 noPass++;
523 }
524 else
525 {
526 G4cout << "FOM distribution is not RANDOM" << G4endl;
527 }
528
529}
530
531
532
533G4double G4ConvergenceTester::calc_Pearson_r ( G4int N , std::vector<G4double> first_ally , std::vector<G4double> second_ally )
534{
535 G4double first_mean = 0.0;
536 G4double second_mean = 0.0;
537
538 G4int i;
539 for ( i = 0 ; i < N ; i++ )
540 {
541 first_mean += first_ally [ i ];
542 second_mean += second_ally [ i ];
543 }
544 first_mean = first_mean / N;
545 second_mean = second_mean / N;
546
547 G4double a = 0.0;
548 for ( i = 0 ; i < N ; i++ )
549 {
550 a += ( first_ally [ i ] - first_mean ) * ( second_ally [ i ] - second_mean );
551 }
552
553 G4double b1 = 0.0;
554 G4double b2 = 0.0;
555 for ( i = 0 ; i < N ; i++ )
556 {
557 b1 += ( first_ally [ i ] - first_mean ) * ( first_ally [ i ] - first_mean );
558 b2 += ( second_ally [ i ] - second_mean ) * ( second_ally [ i ] - second_mean );
559 }
560
561 G4double rds = a / std::sqrt ( b1 * b2 );
562
563 return rds;
564}
565
566
567
568G4bool G4ConvergenceTester::is_monotonically_decrease ( std::vector<G4double> ally )
569{
570
571 std::vector<G4double>::iterator it;
572 for ( it = ally.begin() ; it != ally.end() - 1 ; it++ )
573 {
574 if ( *it < *(it+1) ) return FALSE;
575 }
576
577 noPass++;
578 return TRUE;
579}
580
581
582
583//void G4ConvergenceTester::calc_slope_fit ( std::vector<G4double> largest_socres )
584void G4ConvergenceTester::calc_slope_fit ( std::vector<G4double> )
585{
586
587 // create PDF bins
588 G4double max = largest_scores.front();
589 G4int last = int ( largest_scores.size() );
590 G4double min = 0.0;
591 if ( largest_scores.back() != 0 )
592 {
593 min = largest_scores.back();
594 }
595 else
596 {
597 min = largest_scores[ last-1 ];
598 last = last - 1;
599 }
600
601 //G4cout << "largest " << max << G4endl;
602 //G4cout << "last " << min << G4endl;
603
604 if ( max*0.99 < min )
605 {
606 // upper limit is assumed to have been reached
607 slope = 10.0;
608 return;
609 }
610
611 std::vector < G4double > pdf_grid;
612
613 pdf_grid.resize( noBinOfPDF+1 ); // no grid = no bins + 1
614 pdf_grid[ 0 ] = max;
615 pdf_grid[ noBinOfPDF ] = min;
616 G4double log10_max = std::log10( max );
617 G4double log10_min = std::log10( min );
618 G4double log10_delta = log10_max - log10_min;
619 for ( G4int i = 1 ; i < noBinOfPDF ; i++ )
620 {
621 pdf_grid[i] = std::pow ( 10.0 , log10_max - log10_delta/10.0*(i) );
622 //G4cout << "pdf i " << i << " " << pdf_grid[i] << G4endl;
623 }
624
625 std::vector < G4double > pdf;
626 pdf.resize( noBinOfPDF );
627
628 for ( G4int j=0 ; j < last ; j ++ )
629 {
630 for ( G4int i = 0 ; i < 11 ; i++ )
631 {
632 if ( largest_scores[j] >= pdf_grid[i+1] )
633 {
634 pdf[i] += 1.0 / ( pdf_grid[i] - pdf_grid[i+1] ) / n;
635 //G4cout << "pdf " << j << " " << i << " " << largest_scores[j] << " " << G4endl;
636 break;
637 }
638 }
639 }
640
641 f_xi.resize( noBinOfPDF );
642 f_yi.resize( noBinOfPDF );
643 for ( G4int i = 0 ; i < noBinOfPDF ; i++ )
644 {
645 //G4cout << "pdf i " << i << " " << (pdf_grid[i]+pdf_grid[i+1])/2 << " " << pdf[i] << G4endl;
646 f_xi[i] = (pdf_grid[i]+pdf_grid[i+1])/2;
647 f_yi[i] = pdf[i];
648 }
649
650 // number of variables ( a and k )
651 minimizer = new G4SimplexDownhill<G4ConvergenceTester> ( this , 2 );
652 //G4double minimum = minimizer->GetMinimum();
653 std::vector<G4double> mp = minimizer->GetMinimumPoint();
654 G4double k = mp[1];
655
656 //G4cout << "SLOPE " << 1/mp[1]+1 << G4endl;
657 //G4cout << "SLOPE a " << mp[0] << G4endl;
658 //G4cout << "SLOPE k " << mp[1] << G4endl;
659 //G4cout << "SLOPE minimum " << minimizer->GetMinimum() << G4endl;
660
661 slope = 1/mp[1]+1;
662 if ( k < 1.0/9 ) // Please look Pareto distribution with "sigma=a" and "k"
663 {
664 slope = 10;
665 }
666 if ( slope > 10 )
667 {
668 slope = 10;
669 }
670}
671
672
673
674G4double G4ConvergenceTester::slope_fitting_function ( std::vector< G4double > x )
675{
676
677 G4double a = x[0];
678 G4double k = x[1];
679
680 if ( a <= 0 )
681 {
682 return 3.402823466e+38; // FLOAT_MAX
683 }
684 if ( k == 0 )
685 {
686 return 3.402823466e+38; // FLOAT_MAX
687 }
688
689// f_xi and f_yi is filled at "calc_slope_fit"
690
691 G4double y = 0.0;
692 G4int i;
693 for ( i = 0 ; i < int ( f_yi.size() ) ; i++ )
694 {
695 //if ( 1/a * ( 1 + k * f_xi [ i ] / a ) < 0 )
696 if ( ( 1 + k * f_xi [ i ] / a ) < 0 )
697 {
698 y +=3.402823466e+38; // FLOAT_MAX
699 }
700 else
701 {
702 y += ( f_yi [ i ] - 1/a*std::pow ( 1 + k * f_xi [ i ] / a , - 1/k - 1 ) ) * ( f_yi [ i ] - 1/a*std::pow ( 1 + k * f_xi [ i ] / a , - 1/k - 1 ) );
703 }
704 }
705// G4cout << "y = " << y << G4endl;
706
707 return y;
708}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
std::vector< G4double > GetMinimumPoint()
void Stop()
G4double GetSystemElapsed() const
Definition: G4Timer.cc:119
G4double GetUserElapsed() const
Definition: G4Timer.cc:130
void Start()
#define TRUE
Definition: globals.hh:55
#define FALSE
Definition: globals.hh:52