Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGPiMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
30#include "G4SystemOfUnits.hh"
31#include "Randomize.hh"
32
35 G4Nucleus& targetNucleus)
36{
37 const G4HadProjectile* originalIncident = &aTrack;
38
39 if (originalIncident->GetKineticEnergy()<= 0.1) {
43 return &theParticleChange;
44 }
45
46 // create the target particle
47
48 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
49 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
50
51 G4ReactionProduct currentParticle(
52 const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition() ) );
53 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
54 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
55
56 // Fermi motion and evaporation
57 // As of Geant3, the Fermi energy calculation had not been Done
58
59 G4double ek = originalIncident->GetKineticEnergy();
60 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
61
62 G4double tkin = targetNucleus.Cinema( ek );
63 ek += tkin;
64 currentParticle.SetKineticEnergy( ek );
65 G4double et = ek + amas;
66 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
67 G4double pp = currentParticle.GetMomentum().mag();
68 if( pp > 0.0 ) {
69 G4ThreeVector momentum = currentParticle.GetMomentum();
70 currentParticle.SetMomentum( momentum * (p/pp) );
71 }
72
73 // calculate black track energies
74
75 tkin = targetNucleus.EvaporationEffects( ek );
76 ek -= tkin;
77 currentParticle.SetKineticEnergy( ek );
78 et = ek + amas;
79 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
80 pp = currentParticle.GetMomentum().mag();
81 if( pp > 0.0 ) {
82 G4ThreeVector momentum = currentParticle.GetMomentum();
83 currentParticle.SetMomentum( momentum * (p/pp) );
84 }
85
86 G4ReactionProduct modifiedOriginal = currentParticle;
87
88 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
89 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
90 G4bool incidentHasChanged = false;
91 G4bool targetHasChanged = false;
92 G4bool quasiElastic = false;
93 G4FastVector<G4ReactionProduct,256> vec; // vec will contain the secondary particles
94 G4int vecLen = 0;
95 vec.Initialize( 0 );
96
97 const G4double cutOff = 0.1;
98 if( currentParticle.GetKineticEnergy() > cutOff )
99 InitialCollision(vec, vecLen, currentParticle, targetParticle,
100 incidentHasChanged, targetHasChanged);
101
102 CalculateMomenta(vec, vecLen,
103 originalIncident, originalTarget, modifiedOriginal,
104 targetNucleus, currentParticle, targetParticle,
105 incidentHasChanged, targetHasChanged, quasiElastic);
106
107 SetUpChange(vec, vecLen,
108 currentParticle, targetParticle,
109 incidentHasChanged);
110
111 delete originalTarget;
112 return &theParticleChange;
113}
114
115
116// Initial Collision
117// selects the particle types arising from the initial collision of
118// the projectile and target nucleon. Secondaries are assigned to
119// forward and backward reaction hemispheres, but final state energies
120// and momenta are not calculated here.
121
122void
123G4RPGPiMinusInelastic::InitialCollision(G4FastVector<G4ReactionProduct,256>& vec,
124 G4int& vecLen,
125 G4ReactionProduct& currentParticle,
126 G4ReactionProduct& targetParticle,
127 G4bool& incidentHasChanged,
128 G4bool& targetHasChanged)
129{
130 G4double KE = currentParticle.GetKineticEnergy()/GeV;
131
132 G4int mult;
133 G4int partType;
134 std::vector<G4int> fsTypes;
135
136 G4double testCharge;
137 G4double testBaryon;
138 G4double testStrange;
139
140 // Get particle types according to incident and target types
141
142 if (targetParticle.GetDefinition() == particleDef[pro]) {
143 mult = GetMultiplicityT12(KE);
144 fsTypes = GetFSPartTypesForPimP(mult, KE);
145 partType = fsTypes[0];
146 if (partType != pro) {
147 targetHasChanged = true;
148 targetParticle.SetDefinition(particleDef[partType]);
149 }
150
151 testCharge = 0.0;
152 testBaryon = 1.0;
153 testStrange = 0.0;
154
155 } else { // target was a neutron
156 mult = GetMultiplicityT32(KE);
157 fsTypes = GetFSPartTypesForPimN(mult, KE);
158 partType = fsTypes[0];
159 if (partType != neu) {
160 targetHasChanged = true;
161 targetParticle.SetDefinition(particleDef[partType]);
162 }
163
164 testCharge = -1.0;
165 testBaryon = 1.0;
166 testStrange = 0.0;
167 }
168
169 // Remove target particle from list
170
171 fsTypes.erase(fsTypes.begin());
172
173 // See if the incident particle changed type
174
175 G4int choose = -1;
176 for(G4int i=0; i < mult-1; ++i ) {
177 partType = fsTypes[i];
178 if (partType == pim) {
179 choose = i;
180 break;
181 }
182 }
183 if (choose == -1) {
184 incidentHasChanged = true;
185 choose = G4int(G4UniformRand()*(mult-1) );
186 partType = fsTypes[choose];
187 currentParticle.SetDefinition(particleDef[partType]);
188 }
189
190 fsTypes.erase(fsTypes.begin()+choose);
191
192 // Remaining particles are secondaries. Put them into vec.
193
194 G4ReactionProduct* rp(0);
195 for(G4int i=0; i < mult-2; ++i ) {
196 partType = fsTypes[i];
197 rp = new G4ReactionProduct();
198 rp->SetDefinition(particleDef[partType]);
199 (G4UniformRand() < 0.5) ? rp->SetSide(-1) : rp->SetSide(1);
200 if (partType > pim && partType < pro) rp->SetMayBeKilled(false); // kaons
201 vec.SetElement(vecLen++, rp);
202 }
203
204 // if (mult == 2 && !incidentHasChanged && !targetHasChanged)
205 // quasiElastic = true;
206
207 // Check conservation of charge, strangeness, baryon number
208
209 CheckQnums(vec, vecLen, currentParticle, targetParticle,
210 testCharge, testBaryon, testStrange);
211
212 return;
213}
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
void CheckQnums(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4double Q, G4double B, G4double S)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4ParticleDefinition * particleDef[18]
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4int GetMultiplicityT32(G4double KE) const
G4int GetMultiplicityT12(G4double KE) const
std::vector< G4int > GetFSPartTypesForPimP(G4int mult, G4double KE) const
std::vector< G4int > GetFSPartTypesForPimN(G4int mult, G4double KE) const
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
void SetDefinition(G4ParticleDefinition *aParticleDefinition)