Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEDeuteronInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Hadronic Process: Deuteron Inelastic Process
27// J.L. Chuma, TRIUMF, 25-Feb-1997
28// J.L. Chuma, 08-May-2001: Update original incident passed back in vec[0]
29// from NuclearReaction
30
32#include "G4SystemOfUnits.hh"
33#include "Randomize.hh"
34#include "G4Electron.hh"
35
36void G4LEDeuteronInelastic::ModelDescription(std::ostream& outFile) const
37{
38 outFile << "G4LEDeuteronInelastic is one of the Low Energy Parameterized\n"
39 << "(LEP) models used to implement inelastic deuteron scattering\n"
40 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
41 << "code of H. Fesefeldt. It divides the initial collision\n"
42 << "products into backward- and forward-going clusters which are\n"
43 << "then decayed into final state hadrons. The model does not\n"
44 << "conserve energy on an event-by-event basis. It may be\n"
45 << "applied to deuterons with initial energies between 0 and 10\n"
46 << "TeV.\n";
47}
48
49
52 G4Nucleus& targetNucleus)
53{
55 const G4HadProjectile* originalIncident = &aTrack;
56
57 if (verboseLevel > 1) {
58 const G4Material *targetMaterial = aTrack.GetMaterial();
59 G4cout << "G4LEDeuteronInelastic::ApplyYourself called" << G4endl;
60 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
61 G4cout << "target material = " << targetMaterial->GetName() << ", ";
62 }
63
64 // Work-around for lack of model above 100 MeV
65 if (originalIncident->GetKineticEnergy()/MeV > 100. ||
66 originalIncident->GetKineticEnergy() <= 0.1*MeV) {
70 return &theParticleChange;
71 }
72
73 G4double A = targetNucleus.GetA_asInt();
74 G4double Z = targetNucleus.GetZ_asInt();
75 G4double theAtomicMass = targetNucleus.AtomicMass(A, Z);
76 G4double massVec[9];
77 massVec[0] = targetNucleus.AtomicMass( A+2.0, Z+1.0 );
78 massVec[1] = targetNucleus.AtomicMass( A+1.0, Z+1.0 );
79 massVec[2] = targetNucleus.AtomicMass( A+1.0, Z );
80 massVec[3] = theAtomicMass;
81 massVec[4] = 0.;
82 if (A > 1.0 && A-1.0 > Z)
83 massVec[4] = targetNucleus.AtomicMass(A-1.0, Z);
84 massVec[5] = 0.;
85 if (A > 2.0 && Z > 1.0 && A-2.0 > Z-1.0)
86 massVec[5] = targetNucleus.AtomicMass(A-2.0, Z-1.0);
87 massVec[6] = 0.;
88 if (A > Z+1.0)
89 massVec[6] = targetNucleus.AtomicMass(A, Z+1.0);
90 massVec[7] = massVec[3];
91 massVec[8] = 0.;
92 if (Z > 1.0) massVec[8] = targetNucleus.AtomicMass(A,Z-1.0);
93
94 G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
95 G4int vecLen = 0;
96 vec.Initialize( 0 );
97
98 theReactionDynamics.NuclearReaction(vec, vecLen, originalIncident,
99 targetNucleus, theAtomicMass, massVec);
100
101 G4double p = vec[0]->GetMomentum().mag();
102 theParticleChange.SetMomentumChange( vec[0]->GetMomentum() * (1.0/p) );
103 theParticleChange.SetEnergyChange( vec[0]->GetKineticEnergy() );
104 delete vec[0];
105
106 if (vecLen <= 1)
107 {
111 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
112 return &theParticleChange;
113 }
114
116 for (G4int i=1; i<vecLen; ++i) {
117 pd = new G4DynamicParticle();
118 pd->SetDefinition( vec[i]->GetDefinition() );
119 pd->SetMomentum( vec[i]->GetMomentum() );
121 delete vec[i];
122 }
123
124 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
125 return &theParticleChange;
126}
127
128 /* end of file */
129
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
Hep3Vector unit() const
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4ReactionDynamics theReactionDynamics
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
virtual void ModelDescription(std::ostream &outFile) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetName() const
Definition: G4Material.hh:177
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
void NuclearReaction(G4FastVector< G4ReactionProduct, 4 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4Nucleus &aNucleus, const G4double theAtomicMass, const G4double *massVec)