Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GammaConversionToMuons.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// ------------ G4GammaConversionToMuons physics process ------
30// by H.Burkhardt, S. Kelner and R. Kokoulin, April 2002
31//
32//
33// 07-08-02: missprint in OR condition in DoIt : f1<0 || f1>f1_max ..etc ...
34// 25-10-04: migrade to new interfaces of ParticleChange (vi)
35// ---------------------------------------------------------------------------
36
39#include "G4SystemOfUnits.hh"
40#include "G4UnitsTable.hh"
41#include "G4MuonPlus.hh"
42#include "G4MuonMinus.hh"
43
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
45
46using namespace std;
47
49 G4ProcessType type):G4VDiscreteProcess (processName, type),
50 LowestEnergyLimit (4*G4MuonPlus::MuonPlus()->GetPDGMass()), // 4*Mmuon
51 HighestEnergyLimit(1e21*eV), // ok to 1e21eV=1e12GeV, then LPM suppression
52 CrossSecFactor(1.)
53{
55 MeanFreePath = DBL_MAX;
56}
57
58//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
59
60// destructor
61
63{ }
64
65//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
66
68 const G4ParticleDefinition& particle)
69{
70 return ( &particle == G4Gamma::Gamma() );
71}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
74
76// Build cross section and mean free path tables
77{ //here no tables, just calling PrintInfoDefinition
79}
80
81//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
82
85
86// returns the photon mean free path in GEANT4 internal units
87// (MeanFreePath is a private member of the class)
88
89{
90 const G4DynamicParticle* aDynamicGamma = aTrack.GetDynamicParticle();
91 G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
92 G4Material* aMaterial = aTrack.GetMaterial();
93
94 if (GammaEnergy < LowestEnergyLimit)
95 MeanFreePath = DBL_MAX;
96 else
97 MeanFreePath = ComputeMeanFreePath(GammaEnergy,aMaterial);
98
99 return MeanFreePath;
100}
101
102//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
103
105 G4Material* aMaterial)
106
107// computes and returns the photon mean free path in GEANT4 internal units
108{
109 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
110 const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
111
112 G4double SIGMA = 0 ;
113
114 for ( size_t i=0 ; i < aMaterial->GetNumberOfElements() ; i++ )
115 {
116 G4double AtomicZ = (*theElementVector)[i]->GetZ();
117 G4double AtomicA = (*theElementVector)[i]->GetA()/(g/mole);
118 SIGMA += NbOfAtomsPerVolume[i] *
119 ComputeCrossSectionPerAtom(GammaEnergy,AtomicZ,AtomicA);
120 }
121 return SIGMA > DBL_MIN ? 1./SIGMA : DBL_MAX;
122}
123
124//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
125
127 const G4DynamicParticle* aDynamicGamma,
128 G4Element* anElement)
129
130// gives the total cross section per atom in GEANT4 internal units
131{
132 G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
133 G4double AtomicZ = anElement->GetZ();
134 G4double AtomicA = anElement->GetA()/(g/mole);
135 G4double crossSection =
136 ComputeCrossSectionPerAtom(GammaEnergy,AtomicZ,AtomicA);
137 return crossSection;
138}
139
140//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
141
143 G4double Egam, G4double Z, G4double A)
144
145// Calculates the microscopic cross section in GEANT4 internal units.
146// Total cross section parametrisation from H.Burkhardt
147// It gives a good description at any energy (from 0 to 10**21 eV)
148{ static const G4double Mmuon=G4MuonPlus::MuonPlus()->GetPDGMass();
149 static const G4double Mele=electron_mass_c2;
150 static const G4double Rc=elm_coupling/Mmuon; // classical particle radius
151 static const G4double sqrte=sqrt(exp(1.));
152 static const G4double PowSat=-0.88;
153
154 static G4double CrossSection = 0.0 ;
155
156 if ( A < 1. ) return 0;
157 if ( Egam < 4*Mmuon ) return 0 ; // below threshold return 0
158
159 static G4double EgamLast=0,Zlast=0,PowThres,Ecor,B,Dn,Zthird,Winfty,WMedAppr,
160 Wsatur,sigfac;
161
162 if(Zlast==Z && Egam==EgamLast) return CrossSection; // already calculated
163 EgamLast=Egam;
164
165 if(Zlast!=Z) // new element
166 { Zlast=Z;
167 if(Z==1) // special case of Hydrogen
168 { B=202.4;
169 Dn=1.49;
170 }
171 else
172 { B=183.;
173 Dn=1.54*pow(A,0.27);
174 }
175 Zthird=pow(Z,-1./3.); // Z**(-1/3)
176 Winfty=B*Zthird*Mmuon/(Dn*Mele);
177 WMedAppr=1./(4.*Dn*sqrte*Mmuon);
178 Wsatur=Winfty/WMedAppr;
179 sigfac=4.*fine_structure_const*Z*Z*Rc*Rc;
180 PowThres=1.479+0.00799*Dn;
181 Ecor=-18.+4347./(B*Zthird);
182 }
183 G4double CorFuc=1.+.04*log(1.+Ecor/Egam);
184 G4double Eg=pow(1.-4.*Mmuon/Egam,PowThres)*pow( pow(Wsatur,PowSat)+
185 pow(Egam,PowSat),1./PowSat); // threshold and saturation
186 CrossSection=7./9.*sigfac*log(1.+WMedAppr*CorFuc*Eg);
187 CrossSection*=CrossSecFactor; // increase the CrossSection by (by default 1)
188 return CrossSection;
189}
190
191//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
192
194// Set the factor to artificially increase the cross section
195{ CrossSecFactor=fac;
196 G4cout << "The cross section for GammaConversionToMuons is artificially "
197 << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
198}
199
200//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
201
203 const G4Track& aTrack,
204 const G4Step& aStep)
205//
206// generation of gamma->mu+mu-
207//
208{
210 G4Material* aMaterial = aTrack.GetMaterial();
211
212 static const G4double Mmuon=G4MuonPlus::MuonPlus()->GetPDGMass();
213 static const G4double Mele=electron_mass_c2;
214 static const G4double sqrte=sqrt(exp(1.));
215
216 // current Gamma energy and direction, return if energy too low
217 const G4DynamicParticle *aDynamicGamma = aTrack.GetDynamicParticle();
218 G4double Egam = aDynamicGamma->GetKineticEnergy();
219 if (Egam < 4*Mmuon) return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
220 G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
221
222 // select randomly one element constituting the material
223 const G4Element& anElement = *SelectRandomAtom(aDynamicGamma, aMaterial);
224 G4double Z = anElement.GetZ();
225 G4double A = anElement.GetA()/(g/mole);
226
227 static G4double Zlast=0,B,Dn,Zthird,Winfty,A027,C1Num2,C2Term2;
228 if(Zlast!=Z) // the element has changed
229 { Zlast=Z;
230 if(Z==1) // special case of Hydrogen
231 { B=202.4;
232 Dn=1.49;
233 }
234 else
235 { B=183.;
236 Dn=1.54*pow(A,0.27);
237 }
238 Zthird=pow(Z,-1./3.); // Z**(-1/3)
239 Winfty=B*Zthird*Mmuon/(Dn*Mele);
240 A027=pow(A,0.27);
241 G4double C1Num=0.35*A027;
242 C1Num2=C1Num*C1Num;
243 C2Term2=Mele/(183.*Zthird*Mmuon);
244 }
245
246 G4double GammaMuonInv=Mmuon/Egam;
247 G4double sqrtx=sqrt(.25-GammaMuonInv);
248 G4double xmax=.5+sqrtx;
249 G4double xmin=.5-sqrtx;
250
251 // generate xPlus according to the differential cross section by rejection
252 G4double Ds2=(Dn*sqrte-2.);
253 G4double sBZ=sqrte*B*Zthird/Mele;
254 G4double LogWmaxInv=1./log(Winfty*(1.+2.*Ds2*GammaMuonInv)
255 /(1.+2.*sBZ*Mmuon*GammaMuonInv));
256 G4double xPlus,xMinus,xPM,result,W;
257 do
258 { xPlus=xmin+G4UniformRand()*(xmax-xmin);
259 xMinus=1.-xPlus;
260 xPM=xPlus*xMinus;
261 G4double del=Mmuon*Mmuon/(2.*Egam*xPM);
262 W=Winfty*(1.+Ds2*del/Mmuon)/(1.+sBZ*del);
263 if(W<1.) W=1.; // to avoid negative cross section at xmin
264 G4double xxp=1.-4./3.*xPM; // the main xPlus dependence
265 result=xxp*log(W)*LogWmaxInv;
266 if(result>1.) {
267 G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
268 << " in dSigxPlusGen, result=" << result << " > 1" << G4endl;
269 }
270 }
271 while (G4UniformRand() > result);
272
273 // now generate the angular variables via the auxilary variables t,psi,rho
274 G4double t;
275 G4double psi;
276 G4double rho;
277
278 G4double thetaPlus,thetaMinus,phiHalf; // final angular variables
279
280 do // t, psi, rho generation start (while angle < pi)
281 {
282 //generate t by the rejection method
283 G4double C1=C1Num2* GammaMuonInv/xPM;
284 G4double f1_max=(1.-xPM) / (1.+C1);
285 G4double f1; // the probability density
286 do
287 { t=G4UniformRand();
288 f1=(1.-2.*xPM+4.*xPM*t*(1.-t)) / (1.+C1/(t*t));
289 if(f1<0 || f1> f1_max) // should never happend
290 {
291 G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
292 << "outside allowed range f1=" << f1 << " is set to zero"
293 << G4endl;
294 f1 = 0.0;
295 }
296 }
297 while ( G4UniformRand()*f1_max > f1);
298 // generate psi by the rejection method
299 G4double f2_max=1.-2.*xPM*(1.-4.*t*(1.-t));
300
301 // long version
302 G4double f2;
303 do
304 { psi=2.*pi*G4UniformRand();
305 f2=1.-2.*xPM+4.*xPM*t*(1.-t)*(1.+cos(2.*psi));
306 if(f2<0 || f2> f2_max) // should never happend
307 {
308 G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
309 << "outside allowed range f2=" << f2 << " is set to zero"
310 << G4endl;
311 f2 = 0.0;
312 }
313 }
314 while ( G4UniformRand()*f2_max > f2);
315
316 // generate rho by direct transformation
317 G4double C2Term1=GammaMuonInv/(2.*xPM*t);
318 G4double C2=4./sqrt(xPM)*pow(C2Term1*C2Term1+C2Term2*C2Term2,2.);
319 G4double rhomax=1.9/A027*(1./t-1.);
320 G4double beta=log( (C2+pow(rhomax,4.))/C2 );
321 rho=pow(C2 *( exp(beta*G4UniformRand())-1. ) ,0.25);
322
323 //now get from t and psi the kinematical variables
324 G4double u=sqrt(1./t-1.);
325 G4double xiHalf=0.5*rho*cos(psi);
326 phiHalf=0.5*rho/u*sin(psi);
327
328 thetaPlus =GammaMuonInv*(u+xiHalf)/xPlus;
329 thetaMinus=GammaMuonInv*(u-xiHalf)/xMinus;
330
331 } while ( std::abs(thetaPlus)>pi || std::abs(thetaMinus) >pi);
332
333 // now construct the vectors
334 // azimuthal symmetry, take phi0 at random between 0 and 2 pi
335 G4double phi0=2.*pi*G4UniformRand();
336 G4double EPlus=xPlus*Egam;
337 G4double EMinus=xMinus*Egam;
338
339 // mu+ mu- directions for gamma in z-direction
340 G4ThreeVector MuPlusDirection ( sin(thetaPlus) *cos(phi0+phiHalf),
341 sin(thetaPlus) *sin(phi0+phiHalf), cos(thetaPlus) );
342 G4ThreeVector MuMinusDirection (-sin(thetaMinus)*cos(phi0-phiHalf),
343 -sin(thetaMinus) *sin(phi0-phiHalf), cos(thetaMinus) );
344 // rotate to actual gamma direction
345 MuPlusDirection.rotateUz(GammaDirection);
346 MuMinusDirection.rotateUz(GammaDirection);
348 // create G4DynamicParticle object for the particle1
349 G4DynamicParticle* aParticle1= new G4DynamicParticle(
350 G4MuonPlus::MuonPlus(),MuPlusDirection,EPlus-Mmuon);
351 aParticleChange.AddSecondary(aParticle1);
352 // create G4DynamicParticle object for the particle2
353 G4DynamicParticle* aParticle2= new G4DynamicParticle(
354 G4MuonMinus::MuonMinus(),MuMinusDirection,EMinus-Mmuon);
355 aParticleChange.AddSecondary(aParticle2);
356 //
357 // Kill the incident photon
358 //
362 // Reset NbOfInteractionLengthLeft and return aParticleChange
363 return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep );
364}
365
366//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
367
368G4Element* G4GammaConversionToMuons::SelectRandomAtom(
369 const G4DynamicParticle* aDynamicGamma,
370 G4Material* aMaterial)
371{
372 // select randomly 1 element within the material, invoked by PostStepDoIt
373
374 const G4int NumberOfElements = aMaterial->GetNumberOfElements();
375 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
376 if (NumberOfElements == 1) return (*theElementVector)[0];
377
378 const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
379
380 G4double PartialSumSigma = 0. ;
381 G4double rval = G4UniformRand()/MeanFreePath;
382
383
384 for ( G4int i=0 ; i < NumberOfElements ; i++ )
385 { PartialSumSigma += NbOfAtomsPerVolume[i] *
386 GetCrossSectionPerAtom(aDynamicGamma, (*theElementVector)[i]);
387 if (rval <= PartialSumSigma) return ((*theElementVector)[i]);
388 }
389 G4cout << " WARNING !!! - The Material '"<< aMaterial->GetName()
390 << "' has no elements, NULL pointer returned." << G4endl;
391 return NULL;
392}
393
394//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
395
397{
398 G4String comments ="gamma->mu+mu- Bethe Heitler process, SubType= ";
399 G4cout << G4endl << GetProcessName() << ": " << comments
401 G4cout << " good cross section parametrization from "
402 << G4BestUnit(LowestEnergyLimit,"Energy")
403 << " to " << HighestEnergyLimit/GeV << " GeV for all Z." << G4endl;
404}
405
406//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
std::vector< G4Element * > G4ElementVector
G4ForceCondition
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define C1
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition: G4Element.hh:131
G4double GetA() const
Definition: G4Element.hh:138
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition)
G4double ComputeMeanFreePath(G4double GammaEnergy, G4Material *aMaterial)
virtual G4double ComputeCrossSectionPerAtom(G4double GammaEnergy, G4double AtomicZ, G4double AtomicA)
G4double GetCrossSectionPerAtom(const G4DynamicParticle *aDynamicGamma, G4Element *anElement)
void BuildPhysicsTable(const G4ParticleDefinition &)
G4bool IsApplicable(const G4ParticleDefinition &)
G4GammaConversionToMuons(const G4String &processName="GammaToMuPair", G4ProcessType type=fElectromagnetic)
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:205
const G4String & GetName() const
Definition: G4Material.hh:177
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void Initialize(const G4Track &)
Definition: G4Step.hh:78
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403
G4int GetProcessSubType() const
Definition: G4VProcess.hh:397
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
#define DBL_MIN
Definition: templates.hh:75
#define DBL_MAX
Definition: templates.hh:83