Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HESigmaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27
28// G4 Process: Gheisha High Energy Collision model.
29// This includes the high energy cascading model, the two-body-resonance model
30// and the low energy two-body model. Not included are the low energy stuff
31// like nuclear reactions, nuclear fission without any cascading and all
32// processes for particles at rest.
33// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
34// H. Fesefeldt, RWTH-Aachen, 23-October-1996
35
37#include "globals.hh"
38#include "G4ios.hh"
40#include "G4SystemOfUnits.hh"
41
43 : G4HEInelastic(name)
44{
45 vecLength = 0;
46 theMinEnergy = 20*GeV;
47 theMaxEnergy = 10*TeV;
48 MAXPART = 2048;
49 verboseLevel = 0;
50 G4cout << "WARNING: model G4HESigmaMinusInelastic is being deprecated and will\n"
51 << "disappear in Geant4 version 10.0" << G4endl;
52}
53
54
55void G4HESigmaMinusInelastic::ModelDescription(std::ostream& outFile) const
56{
57 outFile << "G4HESigmaMinusInelastic is one of the High Energy Parameterized\n"
58 << "(HEP) models used to implement inelastic Sigma- scattering\n"
59 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
60 << "code of H. Fesefeldt. It divides the initial collision\n"
61 << "products into backward- and forward-going clusters which are\n"
62 << "then decayed into final state hadrons. The model does not\n"
63 << "conserve energy on an event-by-event basis. It may be\n"
64 << "applied to sigmas with initial energies above 20 GeV.\n";
65}
66
67
70 G4Nucleus& targetNucleus)
71{
72 G4HEVector* pv = new G4HEVector[MAXPART];
73 const G4HadProjectile* aParticle = &aTrack;
74 const G4double A = targetNucleus.GetA_asInt();
75 const G4double Z = targetNucleus.GetZ_asInt();
76 G4HEVector incidentParticle(aParticle);
77
78 G4double atomicNumber = Z;
79 G4double atomicWeight = A;
80
81 G4int incidentCode = incidentParticle.getCode();
82 G4double incidentMass = incidentParticle.getMass();
83 G4double incidentTotalEnergy = incidentParticle.getEnergy();
84
85 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
86 // DHW 19 May 2011: variable set but not used
87
88 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
89
90 if (incidentKineticEnergy < 1.)
91 G4cout << "GHESigmaMinusInelastic: incident energy < 1 GeV" << G4endl;
92
93 if (verboseLevel > 1) {
94 G4cout << "G4HESigmaMinusInelastic::ApplyYourself" << G4endl;
95 G4cout << "incident particle " << incidentParticle.getName()
96 << "mass " << incidentMass
97 << "kinetic energy " << incidentKineticEnergy
98 << G4endl;
99 G4cout << "target material with (A,Z) = ("
100 << atomicWeight << "," << atomicNumber << ")" << G4endl;
101 }
102
103 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
104 atomicWeight, atomicNumber);
105 if (verboseLevel > 1)
106 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
107
108 incidentKineticEnergy -= inelasticity;
109
110 G4double excitationEnergyGNP = 0.;
111 G4double excitationEnergyDTA = 0.;
112
113 G4double excitation = NuclearExcitation(incidentKineticEnergy,
114 atomicWeight, atomicNumber,
115 excitationEnergyGNP,
116 excitationEnergyDTA);
117 if (verboseLevel > 1)
118 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
119 << excitationEnergyDTA << G4endl;
120
121 incidentKineticEnergy -= excitation;
122 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
123 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
124 // *(incidentTotalEnergy+incidentMass));
125 // DHW 19 May 2011: variable set but not used
126
127 G4HEVector targetParticle;
128 if (G4UniformRand() < atomicNumber/atomicWeight) {
129 targetParticle.setDefinition("Proton");
130 } else {
131 targetParticle.setDefinition("Neutron");
132 }
133
134 G4double targetMass = targetParticle.getMass();
135 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
136 + targetMass*targetMass
137 + 2.0*targetMass*incidentTotalEnergy);
138 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
139
140 G4bool inElastic = true;
141 vecLength = 0;
142
143 if (verboseLevel > 1)
144 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
145 << incidentCode << G4endl;
146
147 G4bool successful = false;
148
149 FirstIntInCasSigmaMinus(inElastic, availableEnergy, pv, vecLength,
150 incidentParticle, targetParticle, atomicWeight);
151
152 if (verboseLevel > 1)
153 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
154
155 if ((vecLength > 0) && (availableEnergy > 1.))
156 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
157 pv, vecLength,
158 incidentParticle, targetParticle);
159
160 HighEnergyCascading(successful, pv, vecLength,
161 excitationEnergyGNP, excitationEnergyDTA,
162 incidentParticle, targetParticle,
163 atomicWeight, atomicNumber);
164 if (!successful)
166 excitationEnergyGNP, excitationEnergyDTA,
167 incidentParticle, targetParticle,
168 atomicWeight, atomicNumber);
169 if (!successful)
170 MediumEnergyCascading(successful, pv, vecLength,
171 excitationEnergyGNP, excitationEnergyDTA,
172 incidentParticle, targetParticle,
173 atomicWeight, atomicNumber);
174
175 if (!successful)
177 excitationEnergyGNP, excitationEnergyDTA,
178 incidentParticle, targetParticle,
179 atomicWeight, atomicNumber);
180 if (!successful)
181 QuasiElasticScattering(successful, pv, vecLength,
182 excitationEnergyGNP, excitationEnergyDTA,
183 incidentParticle, targetParticle,
184 atomicWeight, atomicNumber);
185 if (!successful)
186 ElasticScattering(successful, pv, vecLength,
187 incidentParticle,
188 atomicWeight, atomicNumber);
189
190 if (!successful)
191 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
192 << G4endl;
193
195 delete [] pv;
197 return &theParticleChange;
198}
199
200
201void
203 const G4double availableEnergy,
204 G4HEVector pv[],
205 G4int& vecLen,
206 const G4HEVector& incidentParticle,
207 const G4HEVector& targetParticle,
208 const G4double atomicWeight)
209
210// Sigma- undergoes interaction with nucleon within a nucleus. Check if it is
211// energetically possible to produce pions/kaons. In not, assume nuclear excitation
212// occurs and input particle is degraded in energy. No other particles are produced.
213// If reaction is possible, find the correct number of pions/protons/neutrons
214// produced using an interpolation to multiplicity data. Replace some pions or
215// protons/neutrons by kaons or strange baryons according to the average
216// multiplicity per inelastic reaction.
217{
218 static const G4double expxu = 82.; // upper bound for arg. of exp
219 static const G4double expxl = -expxu; // lower bound for arg. of exp
220
221 static const G4double protb = 0.7;
222 static const G4double neutb = 0.7;
223 static const G4double c = 1.25;
224
225 static const G4int numMul = 1200;
226 static const G4int numSec = 60;
227
229 G4int protonCode = Proton.getCode();
230
231 G4int targetCode = targetParticle.getCode();
232 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
233
234 static G4bool first = true;
235 static G4double protmul[numMul], protnorm[numSec]; // proton constants
236 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
237
238 // misc. local variables
239 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
240
241 G4int i, counter, nt, npos, nneg, nzero;
242
243 if (first) { // computation of normalization constants will only be done once
244 first = false;
245 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
246 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
247 counter = -1;
248 for (npos = 0; npos < (numSec/3); npos++) {
249 for (nneg = std::max(0,npos-1); nneg <= (npos+1); nneg++) {
250 for (nzero = 0; nzero < numSec/3; nzero++) {
251 if (++counter < numMul) {
252 nt = npos+nneg+nzero;
253 if ((nt > 0) && (nt<=numSec) ) {
254 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
255 protnorm[nt-1] += protmul[counter];
256 }
257 }
258 }
259 }
260 }
261
262 for (i = 0; i < numMul; i++) neutmul[i] = 0.0;
263 for (i = 0; i < numSec; i++) neutnorm[i] = 0.0;
264 counter = -1;
265 for (npos = 0; npos < numSec/3; npos++) {
266 for (nneg = npos; nneg <= (npos+2); nneg++) {
267 for (nzero = 0; nzero < numSec/3; nzero++) {
268 if (++counter < numMul) {
269 nt = npos+nneg+nzero;
270 if ((nt>0) && (nt<=numSec) ) {
271 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
272 neutnorm[nt-1] += neutmul[counter];
273 }
274 }
275 }
276 }
277 }
278 for (i = 0; i < numSec; i++) {
279 if (protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
280 if (neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
281 }
282 } // end of initialization
283
284 pv[0] = incidentParticle; // initialize the first two places
285 pv[1] = targetParticle; // the same as beam and target
286 vecLen = 2;
287
288 if (!inElastic) { // quasi-elastic scattering, no pions produced
289 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
290 G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
291 if (G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) ) {
292 G4double ran = G4UniformRand();
293 if (targetCode == neutronCode) {
294 pv[0] = Neutron;
295 pv[1] = SigmaMinus;
296 } else {
297 if (ran < 0.2) {
298 pv[0] = SigmaZero;
299 pv[1] = Neutron;
300 } else if (ran < 0.4) {
301 pv[0] = Lambda;
302 pv[1] = Neutron;
303 } else if (ran < 0.6) {
304 pv[0] = Proton;
305 pv[1] = SigmaMinus;
306 } else if (ran < 0.8) {
307 pv[0] = Neutron;
308 pv[1] = SigmaZero;
309 } else {
310 pv[0] = Neutron;
311 pv[1] = Lambda;
312 }
313 }
314 }
315 return;
316
317 } else if (availableEnergy <= PionPlus.getMass()) return;
318
319 // inelastic scattering
320 npos = 0, nneg = 0, nzero = 0;
321
322 // number of total particles vs. centre of mass Energy - 2*proton mass
323 G4double aleab = std::log(availableEnergy);
324 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
325 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
326
327 // normalization constant for kno-distribution.
328 // calculate first the sum of all constants, check for numerical problems.
329 G4double test, dum, anpn = 0.0;
330
331 for (nt = 1; nt <= numSec; nt++) {
332 test = std::exp(std::min(expxu, std::max(expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
333 dum = pi*nt/(2.0*n*n);
334 if (std::fabs(dum) < 1.0) {
335 if (test >= 1.0e-10) anpn += dum*test;
336 } else {
337 anpn += dum*test;
338 }
339 }
340
341 G4double ran = G4UniformRand();
342 G4double excs = 0.0;
343 if (targetCode == protonCode) {
344 counter = -1;
345 for (npos=0; npos<numSec/3; npos++) {
346 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
347 for (nzero=0; nzero<numSec/3; nzero++) {
348 if (++counter < numMul) {
349 nt = npos+nneg+nzero;
350 if ( (nt>0) && (nt<=numSec) ) {
351 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
352 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
353 if (std::fabs(dum) < 1.0) {
354 if( test >= 1.0e-10 )excs += dum*test;
355 } else {
356 excs += dum*test;
357 }
358 if (ran < excs) goto outOfLoop; //----------------------->
359 }
360 }
361 }
362 }
363 }
364
365 // 3 previous loops continued to the end
366 inElastic = false; // quasi-elastic scattering
367 return;
368
369 } else { // target must be a neutron
370 counter = -1;
371 for (npos=0; npos<numSec/3; npos++) {
372 for (nneg=npos; nneg<=(npos+2); nneg++) {
373 for (nzero=0; nzero<numSec/3; nzero++) {
374 if (++counter < numMul) {
375 nt = npos+nneg+nzero;
376 if ( (nt>=1) && (nt<=numSec) ) {
377 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
378 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
379 if (std::fabs(dum) < 1.0) {
380 if( test >= 1.0e-10 )excs += dum*test;
381 } else {
382 excs += dum*test;
383 }
384 if (ran < excs) goto outOfLoop; // -------------------->
385 }
386 }
387 }
388 }
389 }
390 // 3 previous loops continued to the end
391
392 inElastic = false; // quasi-elastic scattering.
393 return;
394 }
395
396 outOfLoop: // <-------------------------------------------
397
398 ran = G4UniformRand();
399 if (targetCode == neutronCode) {
400 if( npos == nneg)
401 {
402 }
403 else if (npos == (nneg-1))
404 {
405 if( ran < 0.25)
406 {
407 pv[0] = SigmaZero;
408 }
409 else if (ran < 0.5)
410 {
411 pv[0] = Lambda;
412 }
413 else
414 {
415 pv[1] = Proton;
416 }
417 }
418 else
419 {
420 if(ran < 0.5)
421 {
422 pv[0] = SigmaZero;
423 pv[1] = Proton;
424 }
425 else
426 {
427 pv[0] = Lambda;
428 pv[1] = Proton;
429 }
430 }
431 } else {
432 if (npos == nneg)
433 {
434 if (ran < 0.5)
435 {
436 }
437 else if (ran < 0.75)
438 {
439 pv[0] = SigmaZero;
440 pv[1] = Neutron;
441 }
442 else
443 {
444 pv[0] = Lambda;
445 pv[1] = Neutron;
446 }
447 }
448 else if (npos == (nneg+1))
449 {
450 pv[1] = Neutron;
451 }
452 else
453 {
454 if (ran < 0.5)
455 {
456 pv[0] = SigmaZero;
457 }
458 else
459 {
460 pv[0] = Lambda;
461 }
462 }
463 }
464
465 nt = npos + nneg + nzero;
466 while (nt > 0) {
467 G4double rnd = G4UniformRand();
468 if (rnd < (G4double)npos/nt) {
469 if (npos > 0) {
470 pv[vecLen++] = PionPlus;
471 npos--;
472 }
473 } else if (rnd < (G4double)(npos+nneg)/nt) {
474 if (nneg > 0) {
475 pv[vecLen++] = PionMinus;
476 nneg--;
477 }
478 } else {
479 if (nzero > 0) {
480 pv[vecLen++] = PionZero;
481 nzero--;
482 }
483 }
484 nt = npos + nneg + nzero;
485 }
486
487 if (verboseLevel > 1) {
488 G4cout << "Particles produced: " ;
489 G4cout << pv[0].getCode() << " " ;
490 G4cout << pv[1].getCode() << " " ;
491 for (i = 2; i < vecLen; i++) G4cout << pv[i].getCode() << " " ;
492 G4cout << G4endl;
493 }
494
495 return;
496}
497
498
499
500
501
502
503
504
505
506
@ stopAndKill
@ neutronCode
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4HEVector SigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector Lambda
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector SigmaMinus
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &) const
void FirstIntInCasSigmaMinus(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
G4HESigmaMinusInelastic(const G4String &name="G4HESigmaMinusInelastic")
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115