Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DNAMillerGreenExcitationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27// GEANT4 tag $Name: $
28//
29
31#include "G4SystemOfUnits.hh"
34
35//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
36
37using namespace std;
38
39//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
40
42 const G4String& nam)
43 :G4VEmModel(nam),isInitialised(false)
44{
45 // nistwater = G4NistManager::Instance()->FindOrBuildMaterial("G4_WATER");
46 fpMolWaterDensity = 0;
47
48 nLevels=0;
49 kineticEnergyCorrection[0]=0.;
50 kineticEnergyCorrection[1]=0.;
51 kineticEnergyCorrection[2]=0.;
52 kineticEnergyCorrection[3]=0.;
53
54 verboseLevel= 0;
55 // Verbosity scale:
56 // 0 = nothing
57 // 1 = warning for energy non-conservation
58 // 2 = details of energy budget
59 // 3 = calculation of cross sections, file openings, sampling of atoms
60 // 4 = entering in methods
61
62 if( verboseLevel>0 )
63 {
64 G4cout << "Miller & Green excitation model is constructed " << G4endl;
65 }
67}
68
69//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
70
72{}
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
75
77 const G4DataVector& /*cuts*/)
78{
79
80 if (verboseLevel > 3)
81 G4cout << "Calling G4DNAMillerGreenExcitationModel::Initialise()" << G4endl;
82
83 // Energy limits
84
88 G4ParticleDefinition* hydrogenDef = instance->GetIon("hydrogen");
89 G4ParticleDefinition* alphaPlusPlusDef = instance->GetIon("alpha++");
90 G4ParticleDefinition* alphaPlusDef = instance->GetIon("alpha+");
91 G4ParticleDefinition* heliumDef = instance->GetIon("helium");
92
93 G4String proton;
94 G4String hydrogen;
95 G4String alphaPlusPlus;
96 G4String alphaPlus;
97 G4String helium;
98
99 // LIMITS AND CONSTANTS
100
101 proton = protonDef->GetParticleName();
102 lowEnergyLimit[proton] = 10. * eV;
103 highEnergyLimit[proton] = 500. * keV;
104
105 kineticEnergyCorrection[0] = 1.;
106 slaterEffectiveCharge[0][0] = 0.;
107 slaterEffectiveCharge[1][0] = 0.;
108 slaterEffectiveCharge[2][0] = 0.;
109 sCoefficient[0][0] = 0.;
110 sCoefficient[1][0] = 0.;
111 sCoefficient[2][0] = 0.;
112
113 hydrogen = hydrogenDef->GetParticleName();
114 lowEnergyLimit[hydrogen] = 10. * eV;
115 highEnergyLimit[hydrogen] = 500. * keV;
116
117 kineticEnergyCorrection[0] = 1.;
118 slaterEffectiveCharge[0][0] = 0.;
119 slaterEffectiveCharge[1][0] = 0.;
120 slaterEffectiveCharge[2][0] = 0.;
121 sCoefficient[0][0] = 0.;
122 sCoefficient[1][0] = 0.;
123 sCoefficient[2][0] = 0.;
124
125 alphaPlusPlus = alphaPlusPlusDef->GetParticleName();
126 lowEnergyLimit[alphaPlusPlus] = 1. * keV;
127 highEnergyLimit[alphaPlusPlus] = 400. * MeV;
128
129 kineticEnergyCorrection[1] = 0.9382723/3.727417;
130 slaterEffectiveCharge[0][1]=0.;
131 slaterEffectiveCharge[1][1]=0.;
132 slaterEffectiveCharge[2][1]=0.;
133 sCoefficient[0][1]=0.;
134 sCoefficient[1][1]=0.;
135 sCoefficient[2][1]=0.;
136
137 alphaPlus = alphaPlusDef->GetParticleName();
138 lowEnergyLimit[alphaPlus] = 1. * keV;
139 highEnergyLimit[alphaPlus] = 400. * MeV;
140
141 kineticEnergyCorrection[2] = 0.9382723/3.727417;
142 slaterEffectiveCharge[0][2]=2.0;
143
144 // Following values provided by M. Dingfelder
145 slaterEffectiveCharge[1][2]=2.00;
146 slaterEffectiveCharge[2][2]=2.00;
147 //
148 sCoefficient[0][2]=0.7;
149 sCoefficient[1][2]=0.15;
150 sCoefficient[2][2]=0.15;
151
152 helium = heliumDef->GetParticleName();
153 lowEnergyLimit[helium] = 1. * keV;
154 highEnergyLimit[helium] = 400. * MeV;
155
156 kineticEnergyCorrection[3] = 0.9382723/3.727417;
157 slaterEffectiveCharge[0][3]=1.7;
158 slaterEffectiveCharge[1][3]=1.15;
159 slaterEffectiveCharge[2][3]=1.15;
160 sCoefficient[0][3]=0.5;
161 sCoefficient[1][3]=0.25;
162 sCoefficient[2][3]=0.25;
163
164 //
165
166 if (particle==protonDef)
167 {
168 SetLowEnergyLimit(lowEnergyLimit[proton]);
169 SetHighEnergyLimit(highEnergyLimit[proton]);
170 }
171
172 if (particle==hydrogenDef)
173 {
174 SetLowEnergyLimit(lowEnergyLimit[hydrogen]);
175 SetHighEnergyLimit(highEnergyLimit[hydrogen]);
176 }
177
178 if (particle==alphaPlusPlusDef)
179 {
180 SetLowEnergyLimit(lowEnergyLimit[alphaPlusPlus]);
181 SetHighEnergyLimit(highEnergyLimit[alphaPlusPlus]);
182 }
183
184 if (particle==alphaPlusDef)
185 {
186 SetLowEnergyLimit(lowEnergyLimit[alphaPlus]);
187 SetHighEnergyLimit(highEnergyLimit[alphaPlus]);
188 }
189
190 if (particle==heliumDef)
191 {
192 SetLowEnergyLimit(lowEnergyLimit[helium]);
193 SetHighEnergyLimit(highEnergyLimit[helium]);
194 }
195
196 //
197
198 nLevels = waterExcitation.NumberOfLevels();
199
200 //
201 if( verboseLevel>0 )
202 {
203 G4cout << "Miller & Green excitation model is initialized " << G4endl
204 << "Energy range: "
205 << LowEnergyLimit() / eV << " eV - "
206 << HighEnergyLimit() / keV << " keV for "
207 << particle->GetParticleName()
208 << G4endl;
209 }
210
211 // Initialize water density pointer
213
214 if (isInitialised) { return; }
216 isInitialised = true;
217
218}
219
220//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
221
223 const G4ParticleDefinition* particleDefinition,
224 G4double k,
225 G4double,
226 G4double)
227{
228 if (verboseLevel > 3)
229 G4cout << "Calling CrossSectionPerVolume() of G4DNAMillerGreenExcitationModel" << G4endl;
230
231 // Calculate total cross section for model
232
233 G4DNAGenericIonsManager *instance;
235
236 if (
237 particleDefinition != G4Proton::ProtonDefinition()
238 &&
239 particleDefinition != instance->GetIon("hydrogen")
240 &&
241 particleDefinition != instance->GetIon("alpha++")
242 &&
243 particleDefinition != instance->GetIon("alpha+")
244 &&
245 particleDefinition != instance->GetIon("helium")
246 )
247
248 return 0;
249
250 G4double lowLim = 0;
251 G4double highLim = 0;
252 G4double crossSection = 0.;
253
254 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()];
255
256 if(waterDensity!= 0.0)
257 // if (material == nistwater || material->GetBaseMaterial() == nistwater)
258 {
259// G4cout << "WATER DENSITY = " << waterDensity*G4Material::GetMaterial("G4_WATER")->GetMassOfMolecule()/(g/cm3)
260// << G4endl;
261 const G4String& particleName = particleDefinition->GetParticleName();
262
263 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
264 pos1 = lowEnergyLimit.find(particleName);
265
266 if (pos1 != lowEnergyLimit.end())
267 {
268 lowLim = pos1->second;
269 }
270
271 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
272 pos2 = highEnergyLimit.find(particleName);
273
274 if (pos2 != highEnergyLimit.end())
275 {
276 highLim = pos2->second;
277 }
278
279 if (k >= lowLim && k < highLim)
280 {
281 crossSection = Sum(k,particleDefinition);
282
283 // add ONE or TWO electron-water excitation for alpha+ and helium
284 /*
285 if ( particleDefinition == instance->GetIon("alpha+")
286 ||
287 particleDefinition == instance->GetIon("helium")
288 )
289 {
290
291 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
292 excitationXS->Initialise(G4Electron::ElectronDefinition());
293
294 G4double sigmaExcitation=0;
295 G4double tmp =0.;
296
297 if (k*0.511/3728 > 8.23*eV && k*0.511/3728 < 10*MeV ) sigmaExcitation =
298 excitationXS->CrossSectionPerVolume(material,G4Electron::ElectronDefinition(),k*0.511/3728,tmp,tmp)
299 /material->GetAtomicNumDensityVector()[1];
300
301 if ( particleDefinition == instance->GetIon("alpha+") )
302 crossSection = crossSection + sigmaExcitation ;
303
304 if ( particleDefinition == instance->GetIon("helium") )
305 crossSection = crossSection + 2*sigmaExcitation ;
306
307 delete excitationXS;
308
309 // Alternative excitation model
310
311 G4DNABornExcitationModel * excitationXS = new G4DNABornExcitationModel();
312 excitationXS->Initialise(G4Electron::ElectronDefinition());
313
314 G4double sigmaExcitation=0;
315 G4double tmp=0;
316
317 if (k*0.511/3728 > 9*eV && k*0.511/3728 < 1*MeV ) sigmaExcitation =
318 excitationXS->CrossSectionPerVolume(material,G4Electron::ElectronDefinition(),k*0.511/3728,tmp,tmp)
319 /material->GetAtomicNumDensityVector()[1];
320
321 if ( particleDefinition == instance->GetIon("alpha+") )
322 crossSection = crossSection + sigmaExcitation ;
323
324 if ( particleDefinition == instance->GetIon("helium") )
325 crossSection = crossSection + 2*sigmaExcitation ;
326
327 delete excitationXS;
328
329 }
330*/
331
332 }
333
334 if (verboseLevel > 2)
335 {
336 G4cout << "__________________________________" << G4endl;
337 G4cout << "°°° G4DNAMillerGreenExcitationModel - XS INFO START" << G4endl;
338 G4cout << "°°° Kinetic energy(eV)=" << k/eV << " particle : " << particleDefinition->GetParticleName() << G4endl;
339 G4cout << "°°° Cross section per water molecule (cm^2)=" << crossSection/cm/cm << G4endl;
340 G4cout << "°°° Cross section per water molecule (cm^-1)=" << crossSection*waterDensity/(1./cm) << G4endl;
341 // G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*material->GetAtomicNumDensityVector()[1]/(1./cm) << G4endl;
342 G4cout << "°°° G4DNAMillerGreenExcitationModel - XS INFO END" << G4endl;
343 }
344 }
345 else
346 {
347 if (verboseLevel > 2)
348 {
349 G4cout << "MillerGreenExcitationModel : WARNING Water density is NULL" << G4endl;
350 }
351 }
352
353 return crossSection*waterDensity;
354 // return crossSection*material->GetAtomicNumDensityVector()[1];
355
356}
357
358//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
359
360void G4DNAMillerGreenExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
361 const G4MaterialCutsCouple* /*couple*/,
362 const G4DynamicParticle* aDynamicParticle,
363 G4double,
364 G4double)
365{
366
367 if (verboseLevel > 3)
368 G4cout << "Calling SampleSecondaries() of G4DNAMillerGreenExcitationModel" << G4endl;
369
370 G4double particleEnergy0 = aDynamicParticle->GetKineticEnergy();
371
372 G4int level = RandomSelect(particleEnergy0,aDynamicParticle->GetDefinition());
373
374 // G4double excitationEnergy = waterExcitation.ExcitationEnergy(level);
375
376 // Dingfelder's excitation levels
377 const G4double excitation[]={ 8.17*eV, 10.13*eV, 11.31*eV, 12.91*eV, 14.50*eV};
378 G4double excitationEnergy = excitation[level];
379
380 G4double newEnergy = particleEnergy0 - excitationEnergy;
381
382 if (newEnergy>0)
383 {
387
388 const G4Track * theIncomingTrack = fParticleChangeForGamma->GetCurrentTrack();
390 level,
391 theIncomingTrack);
392
393 }
394
395}
396
397//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
398
399G4double G4DNAMillerGreenExcitationModel::PartialCrossSection(G4double k, G4int excitationLevel,
400 const G4ParticleDefinition* particleDefinition)
401{
402 // ( ( z * aj ) ^ omegaj ) * ( t - ej ) ^ nu
403 // sigma(t) = zEff^2 * sigma0 * --------------------------------------------
404 // jj ^ ( omegaj + nu ) + t ^ ( omegaj + nu )
405 //
406 // where t is the kinetic energy corrected by Helium mass over proton mass for Helium ions
407 //
408 // zEff is:
409 // 1 for protons
410 // 2 for alpha++
411 // and 2 - c1 S_1s - c2 S_2s - c3 S_2p for alpha+ and He
412 //
413 // Dingfelder et al., RPC 59, 255-275, 2000 from Miller and Green (1973)
414 // Formula (34) and Table 2
415
416 const G4double sigma0(1.E+8 * barn);
417 const G4double nu(1.);
418 const G4double aj[]={876.*eV, 2084.* eV, 1373.*eV, 692.*eV, 900.*eV};
419 const G4double jj[]={19820.*eV, 23490.*eV, 27770.*eV, 30830.*eV, 33080.*eV};
420 const G4double omegaj[]={0.85, 0.88, 0.88, 0.78, 0.78};
421
422 // Dingfelder's excitation levels
423 const G4double Eliq[5]={ 8.17*eV, 10.13*eV, 11.31*eV, 12.91*eV, 14.50*eV};
424
425 G4int particleTypeIndex = 0;
426 G4DNAGenericIonsManager* instance;
428
429 if (particleDefinition == G4Proton::ProtonDefinition()) particleTypeIndex=0;
430 if (particleDefinition == instance->GetIon("hydrogen")) particleTypeIndex=0;
431 if (particleDefinition == instance->GetIon("alpha++")) particleTypeIndex=1;
432 if (particleDefinition == instance->GetIon("alpha+")) particleTypeIndex=2;
433 if (particleDefinition == instance->GetIon("helium")) particleTypeIndex=3;
434
435 G4double tCorrected;
436 tCorrected = k * kineticEnergyCorrection[particleTypeIndex];
437
438 // SI - added protection
439 if (tCorrected < Eliq[excitationLevel]) return 0;
440 //
441
442 G4int z = 10;
443
444 G4double numerator;
445 numerator = std::pow(z * aj[excitationLevel], omegaj[excitationLevel]) *
446 std::pow(tCorrected - Eliq[excitationLevel], nu);
447
448 // H case : see S. Uehara et al. IJRB 77, 2, 139-154 (2001) - section 3.3
449
450 if (particleDefinition == instance->GetIon("hydrogen"))
451 numerator = std::pow(z * 0.75*aj[excitationLevel], omegaj[excitationLevel]) *
452 std::pow(tCorrected - Eliq[excitationLevel], nu);
453
454
455 G4double power;
456 power = omegaj[excitationLevel] + nu;
457
458 G4double denominator;
459 denominator = std::pow(jj[excitationLevel], power) + std::pow(tCorrected, power);
460
461 G4double zEff = particleDefinition->GetPDGCharge() / eplus + particleDefinition->GetLeptonNumber();
462
463 zEff -= ( sCoefficient[0][particleTypeIndex] * S_1s(k, Eliq[excitationLevel], slaterEffectiveCharge[0][particleTypeIndex], 1.) +
464 sCoefficient[1][particleTypeIndex] * S_2s(k, Eliq[excitationLevel], slaterEffectiveCharge[1][particleTypeIndex], 2.) +
465 sCoefficient[2][particleTypeIndex] * S_2p(k, Eliq[excitationLevel], slaterEffectiveCharge[2][particleTypeIndex], 2.) );
466
467 if (particleDefinition == instance->GetIon("hydrogen")) zEff = 1.;
468
469 G4double cross = sigma0 * zEff * zEff * numerator / denominator;
470
471
472 return cross;
473}
474
475//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
476
477G4int G4DNAMillerGreenExcitationModel::RandomSelect(G4double k,const G4ParticleDefinition* particle)
478{
479 G4int i = nLevels;
480 G4double value = 0.;
481 std::deque<double> values;
482
483 G4DNAGenericIonsManager *instance;
485
486 if ( particle == instance->GetIon("alpha++") ||
487 particle == G4Proton::ProtonDefinition()||
488 particle == instance->GetIon("hydrogen") ||
489 particle == instance->GetIon("alpha+") ||
490 particle == instance->GetIon("helium")
491 )
492 {
493 while (i > 0)
494 {
495 i--;
496 G4double partial = PartialCrossSection(k,i,particle);
497 values.push_front(partial);
498 value += partial;
499 }
500
501 value *= G4UniformRand();
502
503 i = nLevels;
504
505 while (i > 0)
506 {
507 i--;
508 if (values[i] > value) return i;
509 value -= values[i];
510 }
511 }
512
513 /*
514 // add ONE or TWO electron-water excitation for alpha+ and helium
515
516 if ( particle == instance->GetIon("alpha+")
517 ||
518 particle == instance->GetIon("helium")
519 )
520 {
521 while (i>0)
522 {
523 i--;
524
525 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
526 excitationXS->Initialise(G4Electron::ElectronDefinition());
527
528 G4double sigmaExcitation=0;
529
530 if (k*0.511/3728 > 8.23*eV && k*0.511/3728 < 10*MeV ) sigmaExcitation = excitationXS->PartialCrossSection(k*0.511/3728,i);
531
532 G4double partial = PartialCrossSection(k,i,particle);
533
534 if (particle == instance->GetIon("alpha+")) partial = PartialCrossSection(k,i,particle) + sigmaExcitation;
535 if (particle == instance->GetIon("helium")) partial = PartialCrossSection(k,i,particle) + 2*sigmaExcitation;
536
537 values.push_front(partial);
538 value += partial;
539 delete excitationXS;
540 }
541
542 value*=G4UniformRand();
543
544 i=5;
545 while (i>0)
546 {
547 i--;
548
549 if (values[i]>value) return i;
550
551 value-=values[i];
552 }
553 }
554*/
555
556 return 0;
557}
558
559//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
560
561G4double G4DNAMillerGreenExcitationModel::Sum(G4double k, const G4ParticleDefinition* particle)
562{
563 G4double totalCrossSection = 0.;
564
565 for (G4int i=0; i<nLevels; i++)
566 {
567 totalCrossSection += PartialCrossSection(k,i,particle);
568 }
569 return totalCrossSection;
570}
571
572//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
573
574G4double G4DNAMillerGreenExcitationModel::S_1s(G4double t,
575 G4double energyTransferred,
576 G4double _slaterEffectiveCharge,
577 G4double shellNumber)
578{
579 // 1 - e^(-2r) * ( 1 + 2 r + 2 r^2)
580 // Dingfelder, in Chattanooga 2005 proceedings, formula (7)
581
582 G4double r = R(t, energyTransferred, _slaterEffectiveCharge, shellNumber);
583 G4double value = 1. - std::exp(-2 * r) * ( ( 2. * r + 2. ) * r + 1. );
584
585 return value;
586}
587
588
589//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
590
591G4double G4DNAMillerGreenExcitationModel::S_2s(G4double t,
592 G4double energyTransferred,
593 G4double _slaterEffectiveCharge,
594 G4double shellNumber)
595{
596 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 2 r^4)
597 // Dingfelder, in Chattanooga 2005 proceedings, formula (8)
598
599 G4double r = R(t, energyTransferred, _slaterEffectiveCharge, shellNumber);
600 G4double value = 1. - std::exp(-2 * r) * (((2. * r * r + 2.) * r + 2.) * r + 1.);
601
602 return value;
603
604}
605
606//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
607
608G4double G4DNAMillerGreenExcitationModel::S_2p(G4double t,
609 G4double energyTransferred,
610 G4double _slaterEffectiveCharge,
611 G4double shellNumber)
612{
613 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 4/3 r^3 + 2/3 r^4)
614 // Dingfelder, in Chattanooga 2005 proceedings, formula (9)
615
616 G4double r = R(t, energyTransferred, _slaterEffectiveCharge, shellNumber);
617 G4double value = 1. - std::exp(-2 * r) * (((( 2./3. * r + 4./3.) * r + 2.) * r + 2.) * r + 1.);
618
619 return value;
620}
621
622//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
623
624G4double G4DNAMillerGreenExcitationModel::R(G4double t,
625 G4double energyTransferred,
626 G4double _slaterEffectiveCharge,
627 G4double shellNumber)
628{
629 // tElectron = m_electron / m_alpha * t
630 // Dingfelder, in Chattanooga 2005 proceedings, p 4
631
632 G4double tElectron = 0.511/3728. * t;
633
634 // The following is provided by M. Dingfelder
635 G4double H = 2.*13.60569172 * eV;
636 G4double value = std::sqrt ( 2. * tElectron / H ) / ( energyTransferred / H ) * (_slaterEffectiveCharge/shellNumber);
637
638 return value;
639}
640
@ eExcitedMolecule
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
static G4DNAChemistryManager * Instance()
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
static G4DNAGenericIonsManager * Instance(void)
G4ParticleDefinition * GetIon(const G4String &name)
G4DNAMillerGreenExcitationModel(const G4ParticleDefinition *p=0, const G4String &nam="DNAMillerGreenExcitationModel")
G4ParticleChangeForGamma * fParticleChangeForGamma
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
static G4DNAMolecularMaterial * Instance()
const std::vector< double > * GetNumMolPerVolTableFor(const G4Material *) const
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
size_t GetIndex() const
Definition: G4Material.hh:261
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
Definition: G4Material.cc:576
const G4Track * GetCurrentTrack() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:88
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:592
void ProposeLocalEnergyDeposit(G4double anEnergyPart)