51 G4cout <<
"WARNING: model G4HEAntiLambdaInelastic is being deprecated and will\n"
52 <<
"disappear in Geant4 version 10.0" <<
G4endl;
58 outFile <<
"G4HEAntiLambdaInelastic is one of the High Energy\n"
59 <<
"Parameterized (HEP) models used to implement inelastic\n"
60 <<
"anti-Lambda scattering from nuclei. It is a re-engineered\n"
61 <<
"version of the GHEISHA code of H. Fesefeldt. It divides the\n"
62 <<
"initial collision products into backward- and forward-going\n"
63 <<
"clusters which are then decayed into final state hadrons.\n"
64 <<
"The model does not conserve energy on an event-by-event\n"
65 <<
"basis. It may be applied to anti-Lambdas with initial energies\n"
84 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
86 if (incidentKineticEnergy < 1.)
87 G4cout <<
"GHEAntiLambdaInelastic: incident energy < 1 GeV" <<
G4endl;
90 G4cout <<
"G4HEAntiLambdaInelastic::ApplyYourself" <<
G4endl;
92 <<
"mass " << incidentMass
93 <<
"kinetic energy " << incidentKineticEnergy
95 G4cout <<
"target material with (A,Z) = ("
96 << atomicWeight <<
"," << atomicNumber <<
")" <<
G4endl;
100 atomicWeight, atomicNumber);
102 G4cout <<
"nuclear inelasticity = " << inelasticity <<
G4endl;
104 incidentKineticEnergy -= inelasticity;
110 atomicWeight, atomicNumber,
112 excitationEnergyDTA);
114 G4cout <<
"nuclear excitation = " << excitation << excitationEnergyGNP
115 << excitationEnergyDTA <<
G4endl;
117 incidentKineticEnergy -= excitation;
118 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
132 std::sqrt( incidentMass*incidentMass + targetMass*targetMass
133 + 2.0*targetMass*incidentTotalEnergy);
134 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
140 G4cout <<
"ApplyYourself: CallFirstIntInCascade for particle "
141 << incidentCode <<
G4endl;
143 G4bool successful =
false;
146 incidentParticle, targetParticle, atomicWeight);
149 G4cout <<
"ApplyYourself::StrangeParticlePairProduction" <<
G4endl;
151 if ((
vecLength > 0) && (availableEnergy > 1.))
154 incidentParticle, targetParticle);
156 excitationEnergyGNP, excitationEnergyDTA,
157 incidentParticle, targetParticle,
158 atomicWeight, atomicNumber);
161 excitationEnergyGNP, excitationEnergyDTA,
162 incidentParticle, targetParticle,
163 atomicWeight, atomicNumber);
166 excitationEnergyGNP, excitationEnergyDTA,
167 incidentParticle, targetParticle,
168 atomicWeight, atomicNumber);
172 excitationEnergyGNP, excitationEnergyDTA,
173 incidentParticle, targetParticle,
174 atomicWeight, atomicNumber);
177 excitationEnergyGNP, excitationEnergyDTA,
178 incidentParticle, targetParticle,
179 atomicWeight, atomicNumber);
183 atomicWeight, atomicNumber);
186 G4cout <<
"GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
215 static const G4double expxl = -expxu;
221 static const G4int numMul = 1200;
222 static const G4int numMulAn = 400;
223 static const G4int numSec = 60;
230 static G4bool first =
true;
231 static G4double protmul[numMul], protnorm[numSec];
232 static G4double protmulAn[numMulAn],protnormAn[numSec];
233 static G4double neutmul[numMul], neutnorm[numSec];
234 static G4double neutmulAn[numMulAn],neutnormAn[numSec];
239 G4int i, counter, nt, npos, nneg, nzero;
244 for( i=0; i<numMul ; i++ ) protmul[i] = 0.0;
245 for( i=0; i<numSec ; i++ ) protnorm[i] = 0.0;
247 for( npos=0; npos<(numSec/3); npos++ )
249 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
251 for( nzero=0; nzero<numSec/3; nzero++ )
253 if( ++counter < numMul )
255 nt = npos+nneg+nzero;
256 if( (nt>0) && (nt<=numSec) )
258 protmul[counter] =
pmltpc(npos,nneg,nzero,nt,protb,c);
259 protnorm[nt-1] += protmul[counter];
265 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
266 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
268 for( npos=0; npos<numSec/3; npos++ )
270 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
272 for( nzero=0; nzero<numSec/3; nzero++ )
274 if( ++counter < numMul )
276 nt = npos+nneg+nzero;
277 if( (nt>0) && (nt<=numSec) )
279 neutmul[counter] =
pmltpc(npos,nneg,nzero,nt,neutb,c);
280 neutnorm[nt-1] += neutmul[counter];
286 for( i=0; i<numSec; i++ )
288 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
289 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
292 for( i=0; i<numMulAn ; i++ ) protmulAn[i] = 0.0;
293 for( i=0; i<numSec ; i++ ) protnormAn[i] = 0.0;
295 for( npos=1; npos<(numSec/3); npos++ )
297 nneg = std::max(0,npos-1);
298 for( nzero=0; nzero<numSec/3; nzero++ )
300 if( ++counter < numMulAn )
302 nt = npos+nneg+nzero;
303 if( (nt>1) && (nt<=numSec) )
305 protmulAn[counter] =
pmltpc(npos,nneg,nzero,nt,protb,c);
306 protnormAn[nt-1] += protmulAn[counter];
311 for( i=0; i<numMulAn; i++ ) neutmulAn[i] = 0.0;
312 for( i=0; i<numSec; i++ ) neutnormAn[i] = 0.0;
314 for( npos=0; npos<numSec/3; npos++ )
317 for( nzero=0; nzero<numSec/3; nzero++ )
319 if( ++counter < numMulAn )
321 nt = npos+nneg+nzero;
322 if( (nt>1) && (nt<=numSec) )
324 neutmulAn[counter] =
pmltpc(npos,nneg,nzero,nt,neutb,c);
325 neutnormAn[nt-1] += neutmulAn[counter];
330 for( i=0; i<numSec; i++ )
332 if( protnormAn[i] > 0.0 )protnormAn[i] = 1.0/protnormAn[i];
333 if( neutnormAn[i] > 0.0 )neutnormAn[i] = 1.0/neutnormAn[i];
340 pv[0] = incidentParticle;
341 pv[1] = targetParticle;
346 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
348 G4int iplab = std::min(9,
G4int( incidentTotalMomentum*2.5));
349 if(
G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
353 if ( targetCode == protonCode)
415 npos = 0; nneg = 0; nzero = 0;
416 G4double anhl[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.97, 0.88,
417 0.85, 0.81, 0.75, 0.64, 0.64, 0.55, 0.55, 0.45, 0.47, 0.40,
418 0.39, 0.36, 0.33, 0.10, 0.01};
419 G4int iplab =
G4int( incidentTotalMomentum*10.);
420 if ( iplab > 9) iplab = 10 +
G4int( (incidentTotalMomentum -1.)*5. );
421 if ( iplab > 14) iplab = 15 +
G4int( incidentTotalMomentum -2. );
422 if ( iplab > 22) iplab = 23 +
G4int( (incidentTotalMomentum -10.)/10.);
423 iplab = std::min(24, iplab);
428 G4double aleab = std::log(availableEnergy);
429 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
430 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
436 for (nt = 1; nt <= numSec; nt++) {
437 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
438 dum = pi*nt/(2.0*n*n);
439 if (std::fabs(dum) < 1.0) {
440 if (test >= 1.0e-10) anpn += dum*test;
448 if (targetCode == protonCode) {
450 for (npos = 0; npos < numSec/3; npos++) {
451 for (nneg = std::max(0,npos-2); nneg <= (npos+1); nneg++) {
452 for (nzero = 0; nzero < numSec/3; nzero++) {
453 if (++counter < numMul) {
454 nt = npos+nneg+nzero;
455 if ((nt > 0) && (nt <= numSec) ) {
456 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
457 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
459 if (std::fabs(dum) < 1.0) {
460 if (test >= 1.0e-10) excs += dum*test;
465 if (ran < excs)
goto outOfLoop;
476 for( npos=0; npos<numSec/3; npos++ )
478 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
480 for( nzero=0; nzero<numSec/3; nzero++ )
482 if( ++counter < numMul )
484 nt = npos+nneg+nzero;
485 if( (nt>0) && (nt<=numSec) )
487 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
488 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
489 if (std::fabs(dum) < 1.0) {
490 if( test >= 1.0e-10 )excs += dum*test;
495 if (ran < excs)
goto outOfLoop;
510 if( targetCode == protonCode)
527 else if (npos == (nneg+1))
543 else if (npos == (nneg-1))
570 else if ( npos == (nneg-1))
586 else if (npos == (nneg+1))
603 G4double aleab = std::log(availableEnergy);
604 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
605 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
611 for (nt=2; nt<=numSec; nt++) {
612 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
613 dum = pi*nt/(2.0*n*n);
615 if (std::fabs(dum) < 1.0) {
616 if( test >= 1.0e-10 )anpn += dum*test;
624 if (targetCode == protonCode) {
626 for (npos=1; npos<numSec/3; npos++) {
628 for( nzero=0; nzero<numSec/3; nzero++ )
630 if( ++counter < numMulAn )
632 nt = npos+nneg+nzero;
633 if( (nt>1) && (nt<=numSec) ) {
634 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
635 dum = (pi/anpn)*nt*protmulAn[counter]*protnormAn[nt-1]/(2.0*n*n);
637 if (std::fabs(dum) < 1.0) {
638 if( test >= 1.0e-10 )excs += dum*test;
643 if (ran < excs)
goto outOfLoopAn;
654 for (npos=0; npos<numSec/3; npos++) {
656 for( nzero=0; nzero<numSec/3; nzero++ ) {
657 if (++counter < numMulAn) {
658 nt = npos+nneg+nzero;
659 if( (nt>1) && (nt<=numSec) ) {
660 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
661 dum = (pi/anpn)*nt*neutmulAn[counter]*neutnormAn[nt-1]/(2.0*n*n);
663 if (std::fabs(dum) < 1.0) {
664 if( test >= 1.0e-10 )excs += dum*test;
669 if (ran < excs)
goto outOfLoopAn;
683 nt = npos + nneg + nzero;
694 else if ( ran < (
G4double)(npos+nneg)/nt)
710 nt = npos + nneg + nzero;
714 G4cout <<
"Particles produced: " ;
717 for (i=2; i < vecLen; i++)
G4DLLIMPORT std::ostream G4cout
virtual void ModelDescription(std::ostream &) const
G4HEAntiLambdaInelastic(const G4String &name="G4HEAntiLambdaInelastic")
void FirstIntInCasAntiLambda(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector AntiSigmaMinus
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double getEnergy() const
G4double getTotalMomentum() const
void setDefinition(G4String name)
void SetStatusChange(G4HadFinalStateStatus aS)
G4HadFinalState theParticleChange