Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NuclearAbrasionGeometry.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * *
21// * Parts of this code which have been developed by QinetiQ Ltd *
22// * under contract to the European Space Agency (ESA) are the *
23// * intellectual property of ESA. Rights to use, copy, modify and *
24// * redistribute this software for general public use are granted *
25// * in compliance with any licensing, distribution and development *
26// * policy adopted by the Geant4 Collaboration. This code has been *
27// * written by QinetiQ Ltd for the European Space Agency, under ESA *
28// * contract 17191/03/NL/LvH (Aurora Programme). *
29// * *
30// * By using, copying, modifying or distributing the software (or *
31// * any work based on the software) you agree to acknowledge its *
32// * use in resulting scientific publications, and indicate your *
33// * acceptance of all terms of the Geant4 Software license. *
34// ********************************************************************
35//
36// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37//
38// MODULE: G4NuclearAbrasionGeometry.cc
39//
40// Version: B.1
41// Date: 15/04/04
42// Author: P R Truscott
43// Organisation: QinetiQ Ltd, UK
44// Customer: ESA/ESTEC, NOORDWIJK
45// Contract: 17191/03/NL/LvH
46//
47// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48//
49// CHANGE HISTORY
50// --------------
51//
52// 18 November 2003, P R Truscott, QinetiQ Ltd, UK
53// Created.
54//
55// 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56// Beta release
57//
58// 4 June 2004, J.P. Wellisch, CERN, Switzerland
59// resolving technical portability issues.
60//
61// 12 June 2012, A. Ribon, CERN, Switzerland
62// Fixing trivial warning errors of shadowed variables.
63//
64// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65////////////////////////////////////////////////////////////////////////////////
66//
68#include "G4WilsonRadius.hh"
70#include "G4SystemOfUnits.hh"
71////////////////////////////////////////////////////////////////////////////////
72//
74 G4double AT1, G4double r1)
75{
76//
77//
78// Initialise variables for interaction geometry.
79//
81 AP = AP1;
82 AT = AT1;
83 rP = aR.GetWilsonRadius(AP);
84 rT = aR.GetWilsonRadius(AT);
85 r = r1;
86 n = rP / (rP + rT);
87 b = r / (rP + rT);
88 m = rT / rP;
89 Q = (1.0 - b)/n;
90 S = Q * Q;
91 T = S * Q;
92 R = std::sqrt(m*n);
93 U = 1.0/m - 2.0;
94//
95//
96// Initialise the threshold radius-ratio at which interactions are considered
97// peripheral or central.
98//
99 rth = 2.0/3.0;
100 B = 10.0 * MeV;
101}
102////////////////////////////////////////////////////////////////////////////////
103//
105{;}
106////////////////////////////////////////////////////////////////////////////////
107//
109 {if (rth1 > 0.0 && rth1 <= 1.0) rth = rth1;}
110////////////////////////////////////////////////////////////////////////////////
111//
113 {return rth;}
114////////////////////////////////////////////////////////////////////////////////
115//
117{
118//
119//
120// Initialise the value for P, then determine the actual value depending upon
121// whether the projectile is larger or smaller than the target and these radii
122// in relation to the impact parameter.
123//
124 G4double valueP = 0.0;
125
126 if (rT > rP)
127 {
128 if (rT-rP<=r && r<=rT+rP) valueP = 0.125*R*U*S - 0.125*(0.5*R*U+1.0)*T;
129 else valueP = -1.0;
130 }
131 else
132 {
133 if (rP-rT<=r && r<=rP+rT) valueP = 0.125*R*U*S - 0.125*(0.5*std::sqrt(n/m)*U-
134 (std::sqrt(1.0-m*m)/n - 1.0)*std::sqrt((2.0-m)/std::pow(m,5.0)))*T;
135 else valueP = (std::sqrt(1.0-m*m)/n-1.0)*std::sqrt(1.0-b*b/n/n);
136 }
137
138 if (!(valueP <= 1.0 && valueP>= -1.0))
139 {
140 if (valueP > 1.0) valueP = 1.0;
141 else valueP = -1.0;
142 }
143 return valueP;
144}
145////////////////////////////////////////////////////////////////////////////////
146//
148{
149//
150//
151// Initialise the value for F, then determine the actual value depending upon
152// whether the projectile is larger or smaller than the target and these radii
153// in relation to the impact parameter.
154//
155 G4double valueF = 0.0;
156
157 if (rT > rP)
158 {
159 if (rT-rP<=r && r<=rT+rP) valueF = 0.75*R*S - 0.125*(3.0*R-1.0)*T;
160 else valueF = 1.0;
161 }
162 else
163 {
164 if (rP-rT<=r && r<=rP+rT) valueF = 0.75*R*S - 0.125*(3.0*std::sqrt(n/m)-
165 (1.0-std::pow(1.0-m*m,3.0/2.0))*std::sqrt(1.0-std::pow(1.0-m,2.0))/std::pow(m,3.0))*T;
166 else valueF = (1.0-std::pow(1.0-m*m,3.0/2.0))*std::sqrt(1.0-b*b/n/n);
167 }
168
169 if (!(valueF <= 1.0 && valueF>= 0.0))
170 {
171 if (valueF > 1.0) valueF = 1.0;
172 else valueF = 0.0;
173 }
174 return valueF;
175}
176////////////////////////////////////////////////////////////////////////////////
177//
179{
180 G4double F1 = F();
181 G4double P1 = P();
182 G4double Es = 0.0;
183
184 Es = 0.95 * MeV * 4.0 * pi * rP*rP/fermi/fermi *
185 (1.0+P1-std::pow(1.0-F1,2.0/3.0));
186// if (rT < rP && r < rP-rT)
187 if ((r-rP)/rT < rth)
188 {
189 G4double omega = 0.0;
190 if (AP < 12.0) omega = 1500.0;
191 else if (AP <= 16.0) omega = 1500.0 - 320.0*(AP-12.0);
192 Es *= 1.0 + F1*(5.0+omega*F1*F1);
193 }
194
195 if (Es < 0.0)
196 Es = 0.0;
197 else if (Es > B * AP)
198 Es = B * AP;
199 return Es;
200}
201
202
204{
205 // This member function declares a new G4NuclearAbrasionGeometry object
206 // but with the projectile and target exchanged to determine the values
207 // for F and P. Determination of the excess surface area and excitation
208 // energy is as above.
209
210 G4NuclearAbrasionGeometry* revAbrasionGeometry =
211 new G4NuclearAbrasionGeometry(AT, AP, r);
212 G4double F1 = revAbrasionGeometry->F();
213 G4double P1 = revAbrasionGeometry->P();
214 G4double Es = 0.0;
215
216 Es = 0.95 * MeV * 4.0 * pi * rT*rT/fermi/fermi *
217 (1.0+P1-std::pow(1.0-F1,2.0/3.0));
218
219// if (rP < rT && r < rT-rP)
220 if ((r-rT)/rP < rth) {
221 G4double omega = 0.0;
222 if (AT < 12.0) omega = 1500.0;
223 else if (AT <= 16.0) omega = 1500.0 - 320.0*(AT-12.0);
224 Es *= 1.0 + F1*(5.0+omega*F1*F1);
225 }
226
227 if (Es < 0.0)
228 Es = 0.0;
229 else if (Es > B * AT)
230 Es = B * AT;
231
232 delete revAbrasionGeometry;
233
234 return Es;
235}
double G4double
Definition: G4Types.hh:64
G4NuclearAbrasionGeometry(G4double AP, G4double AT, G4double r)
G4double GetWilsonRadius(G4double A)