Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEnp.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27// G4 Low energy model: n-p scattering
28// F.W. Jones, L.G. Greeniaus, H.P. Wellisch
29
30// 11-OCT-2007 F.W. Jones: removed erroneous code for identity
31// exchange of particles.
32// FWJ 27-AUG-2010: extended to 5 GeV by Tony Kwan TRIUMF
33
34#include "G4LEnp.hh"
36#include "G4SystemOfUnits.hh"
37#include "Randomize.hh"
38#include "G4ios.hh"
39
40// Initialization of static data arrays:
41#include "G4LEnpData.hh"
42#include "Randomize.hh"
43
44
46{
47 // theParticleChange.SetNumberOfSecondaries(1);
48
49 // SetMinEnergy(10.*MeV);
50 // SetMaxEnergy(1200.*MeV);
51 SetMinEnergy(0.);
52 SetMaxEnergy(5.*GeV);
53}
54
56{
58}
59
61G4LEnp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
62{
64 const G4HadProjectile* aParticle = &aTrack;
65
66 G4double P = aParticle->GetTotalMomentum();
67 G4double Px = aParticle->Get4Momentum().x();
68 G4double Py = aParticle->Get4Momentum().y();
69 G4double Pz = aParticle->Get4Momentum().z();
70 G4double ek = aParticle->GetKineticEnergy();
71 G4ThreeVector theInitial = aParticle->Get4Momentum().vect();
72
73 if (verboseLevel > 1) {
74 G4double E = aParticle->GetTotalEnergy();
75 G4double E0 = aParticle->GetDefinition()->GetPDGMass();
76 G4double Q = aParticle->GetDefinition()->GetPDGCharge();
77 G4int A = targetNucleus.GetA_asInt();
78 G4int Z = targetNucleus.GetZ_asInt();
79 G4cout << "G4LEnp:ApplyYourself: incident particle: "
80 << aParticle->GetDefinition()->GetParticleName() << G4endl;
81 G4cout << "P = " << P/GeV << " GeV/c"
82 << ", Px = " << Px/GeV << " GeV/c"
83 << ", Py = " << Py/GeV << " GeV/c"
84 << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
85 G4cout << "E = " << E/GeV << " GeV"
86 << ", kinetic energy = " << ek/GeV << " GeV"
87 << ", mass = " << E0/GeV << " GeV"
88 << ", charge = " << Q << G4endl;
89 G4cout << "G4LEnp:ApplyYourself: material:" << G4endl;
90 G4cout << "A = " << A
91 << ", Z = " << Z
92 << ", atomic mass "
93 << G4Proton::Proton()->GetPDGMass()/GeV << "GeV"
94 << G4endl;
95 //
96 // GHEISHA ADD operation to get total energy, mass, charge
97 //
98 E += proton_mass_c2;
99 G4double E02 = E*E - P*P;
100 E0 = std::sqrt(std::abs(E02));
101 if (E02 < 0)E0 *= -1;
102 Q += Z;
103 G4cout << "G4LEnp:ApplyYourself: total:" << G4endl;
104 G4cout << "E = " << E/GeV << " GeV"
105 << ", mass = " << E0/GeV << " GeV"
106 << ", charge = " << Q << G4endl;
107 }
108
109 // Find energy bin
110
111 G4int je1 = 0;
112 G4int je2 = NENERGY - 1;
113 ek = ek/GeV;
114 do {
115 G4int midBin = (je1 + je2)/2;
116 if (ek < elab[midBin])
117 je2 = midBin;
118 else
119 je1 = midBin;
120 } while (je2 - je1 > 1);
121 G4double delab = elab[je2] - elab[je1];
122
123 // Sample the angle
124
125 G4float sample = G4UniformRand();
126 G4int ke1 = 0;
127 G4int ke2 = NANGLE - 1;
128 G4double dsig = sig[je2][0] - sig[je1][0];
129 G4double rc = dsig/delab;
130 G4double b = sig[je1][0] - rc*elab[je1];
131 G4double sigint1 = rc*ek + b;
132 G4double sigint2 = 0.;
133
134 if (verboseLevel > 1) {
135 G4cout << "sample=" << sample << G4endl
136 << ke1 << " " << ke2 << " "
137 << sigint1 << " " << sigint2 << G4endl;
138 }
139 do {
140 G4int midBin = (ke1 + ke2)/2;
141 dsig = sig[je2][midBin] - sig[je1][midBin];
142 rc = dsig/delab;
143 b = sig[je1][midBin] - rc*elab[je1];
144 G4double sigint = rc*ek + b;
145 if (sample < sigint) {
146 ke2 = midBin;
147 sigint2 = sigint;
148 }
149 else {
150 ke1 = midBin;
151 sigint1 = sigint;
152 }
153 if (verboseLevel > 1) {
154 G4cout << ke1 << " " << ke2 << " "
155 << sigint1 << " " << sigint2 << G4endl;
156 }
157 } while (ke2 - ke1 > 1);
158
159 dsig = sigint2 - sigint1;
160 rc = 1./dsig;
161 b = ke1 - rc*sigint1;
162 G4double kint = rc*sample + b;
163 G4double theta = (0.5 + kint)*pi/180.;
164
165 if (verboseLevel > 1) {
166 G4cout << " energy bin " << je1 << " energy=" << elab[je1] << G4endl;
167 G4cout << " angle bin " << kint << " angle=" << theta/degree << G4endl;
168 }
169
170 // Get the target particle
171
172 G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
173
174 G4double E1 = aParticle->GetTotalEnergy();
175 G4double M1 = aParticle->GetDefinition()->GetPDGMass();
176 G4double E2 = targetParticle->GetTotalEnergy();
177 G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
178 G4double totalEnergy = E1 + E2;
179 G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
180
181 // Transform into centre of mass system
182
183 G4double px = (M2/pseudoMass)*Px;
184 G4double py = (M2/pseudoMass)*Py;
185 G4double pz = (M2/pseudoMass)*Pz;
186 G4double p = std::sqrt(px*px + py*py + pz*pz);
187
188 if (verboseLevel > 1) {
189 G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
190 G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
191 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
192 << pz/GeV << " " << p/GeV << G4endl;
193 }
194
195 // First scatter w.r.t. Z axis
196 G4double phi = G4UniformRand()*twopi;
197 G4double pxnew = p*std::sin(theta)*std::cos(phi);
198 G4double pynew = p*std::sin(theta)*std::sin(phi);
199 G4double pznew = p*std::cos(theta);
200
201 // Rotate according to the direction of the incident particle
202 if (px*px + py*py > 0) {
203 G4double cost, sint, ph, cosp, sinp;
204 cost = pz/p;
205 sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2;
206 py < 0 ? ph = 3*halfpi : ph = halfpi;
207 if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px);
208 cosp = std::cos(ph);
209 sinp = std::sin(ph);
210 px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
211 py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
212 pz = (-sint*pxnew + cost*pznew);
213 }
214 else {
215 px = pxnew;
216 py = pynew;
217 pz = pznew;
218 }
219
220 if (verboseLevel > 1) {
221 G4cout << " AFTER SCATTER..." << G4endl;
222 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
223 << pz/GeV << " " << p/GeV << G4endl;
224 }
225
226 // Transform to lab system
227
228 G4double E1pM2 = E1 + M2;
229 G4double betaCM = P/E1pM2;
230 G4double betaCMx = Px/E1pM2;
231 G4double betaCMy = Py/E1pM2;
232 G4double betaCMz = Pz/E1pM2;
233 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
234
235 if (verboseLevel > 1) {
236 G4cout << " betaCM " << betaCMx << " " << betaCMy << " "
237 << betaCMz << " " << betaCM << G4endl;
238 G4cout << " gammaCM " << gammaCM << G4endl;
239 }
240
241 // Now following GLOREN...
242
243 G4double BETA[5], PA[5], PB[5];
244 BETA[1] = -betaCMx;
245 BETA[2] = -betaCMy;
246 BETA[3] = -betaCMz;
247 BETA[4] = gammaCM;
248
249 //The incident particle...
250
251 PA[1] = px;
252 PA[2] = py;
253 PA[3] = pz;
254 PA[4] = std::sqrt(M1*M1 + p*p);
255
256 G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
257 G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
258
259 PB[1] = PA[1] + BPGAM * BETA[1];
260 PB[2] = PA[2] + BPGAM * BETA[2];
261 PB[3] = PA[3] + BPGAM * BETA[3];
262 PB[4] = (PA[4] - BETPA) * BETA[4];
263
265 newP->SetDefinition(const_cast<G4ParticleDefinition *>(aParticle->GetDefinition()));
266 newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
267
268 //The target particle...
269
270 PA[1] = -px;
271 PA[2] = -py;
272 PA[3] = -pz;
273 PA[4] = std::sqrt(M2*M2 + p*p);
274
275 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
276 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
277
278 PB[1] = PA[1] + BPGAM * BETA[1];
279 PB[2] = PA[2] + BPGAM * BETA[2];
280 PB[3] = PA[3] + BPGAM * BETA[3];
281 PB[4] = (PA[4] - BETPA) * BETA[4];
282
283 targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
284
285 if (verboseLevel > 1) {
286 G4cout << " particle 1 momentum in LAB "
287 << newP->GetMomentum()*(1./GeV)
288 << " " << newP->GetTotalMomentum()/GeV << G4endl;
289 G4cout << " particle 2 momentum in LAB "
290 << targetParticle->GetMomentum()*(1./GeV)
291 << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
292 G4cout << " TOTAL momentum in LAB "
293 << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV)
294 << " "
295 << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
296 << G4endl;
297 }
298
301 delete newP;
302 theParticleChange.AddSecondary(targetParticle);
303
304 return &theParticleChange;
305}
306
307 // end of file
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
float G4float
Definition: G4Types.hh:65
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector vect() const
const G4ThreeVector & GetMomentumDirection() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
void SetMomentum(const G4ThreeVector &momentum)
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
~G4LEnp()
Definition: G4LEnp.cc:55
G4LEnp()
Definition: G4LEnp.cc:45
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
Definition: G4LEnp.cc:61
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4Proton * Proton()
Definition: G4Proton.cc:93