Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GEMProbability.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28//---------------------------------------------------------------------
29//
30// Geant4 header G4GEMProbability
31//
32//
33// Hadronic Process: Nuclear De-excitations
34// by V. Lara (Sept 2001)
35//
36// 18.05.2010 V.Ivanchenko trying to speedup the most slow method
37// by usage of G4Pow, integer Z and A; moved constructor,
38// destructor and virtual functions to source
39//
40
41#ifndef G4GEMProbability_h
42#define G4GEMProbability_h 1
43
45
49#include "G4VCoulombBarrier.hh"
51#include "G4Pow.hh"
52
54{
55public:
56
57 G4GEMProbability(G4int anA, G4int aZ, G4double aSpin);
58
59 virtual ~G4GEMProbability();
60
61 G4double EmissionProbability(const G4Fragment & fragment, G4double anEnergy);
62
63 inline G4int GetZ_asInt(void) const;
64
65 inline G4int GetA_asInt(void) const;
66
67 inline G4double GetZ(void) const;
68
69 inline G4double GetA(void) const;
70
71 inline G4double GetSpin(void) const;
72
73 inline G4double GetNormalization(void) const;
74
75 inline void SetCoulomBarrier(const G4VCoulombBarrier * aCoulombBarrierStrategy);
76
77 inline G4double GetCoulombBarrier(const G4Fragment& fragment) const;
78
79 inline G4double CalcAlphaParam(const G4Fragment & ) const;
80
81 inline G4double CalcBetaParam(const G4Fragment & ) const;
82
83private:
84
85 G4double CalcProbability(const G4Fragment & fragment,
86 G4double MaximalKineticEnergy,
87 G4double V);
88
89 inline G4double CCoeficient(G4int) const;
90
91 inline G4double I0(G4double t);
92 inline G4double I1(G4double t, G4double tx);
93 inline G4double I2(G4double s0, G4double sx);
94 G4double I3(G4double s0, G4double sx);
95
96 // Copy constructor
99 const G4GEMProbability & operator=(const G4GEMProbability &right);
100 G4bool operator==(const G4GEMProbability &right) const;
101 G4bool operator!=(const G4GEMProbability &right) const;
102
103 // Data Members
104 G4Pow* fG4pow;
105 G4PairingCorrection* fPairCorr;
106
107 G4VLevelDensityParameter * theEvapLDPptr;
108
109 G4int theA;
110 G4int theZ;
111
112 // Spin is fragment spin
113 G4double Spin;
114
115 // Coulomb Barrier
116 const G4VCoulombBarrier * theCoulombBarrierPtr;
117
118 // Normalization
119 G4double Normalization;
120
121protected:
122
124
125 // Resonances Energy
126 std::vector<G4double> ExcitEnergies;
127
128 // Resonances Spin
129 std::vector<G4double> ExcitSpins;
130
131 // Resonances half lifetime
132 std::vector<G4double> ExcitLifetimes;
133
134};
135
137{
138 return theZ;
139}
140
142{
143 return theA;
144}
145
147{
148 return theZ;
149}
150
152{
153 return theA;
154}
155
157{
158 return Spin;
159}
160
162{
163 return Normalization;
164}
165
166inline void
168{
169 theCoulombBarrierPtr = aCoulombBarrierStrategy;
170}
171
172inline G4double
174{
175 G4double res = 0.0;
176 if (theCoulombBarrierPtr) {
177 G4int Acomp = fragment.GetA_asInt();
178 G4int Zcomp = fragment.GetZ_asInt();
179 res = theCoulombBarrierPtr->GetCoulombBarrier(Acomp-theA, Zcomp-theZ,
180 fragment.GetExcitationEnergy() -
181 fPairCorr->GetPairingCorrection(Acomp,Zcomp));
182 }
183 return res;
184}
185
186inline G4double G4GEMProbability::CCoeficient(G4int aZ) const
187{
188 //JMQ 190709 C's values from Furihata's paper
189 //(notes added on proof in Dostrovskii's paper)
190 //data = {{20, 0.}, {30, -0.06}, {40, -0.10}, {50, -0.10}};
191 G4double C = 0.0;
192 if (aZ >= 50){
193 C=-0.10/G4double(theA);
194 } else if (aZ > 20) {
195 C=(0.123482-0.00534691*aZ-0.0000610624*aZ*aZ+5.93719*1e-7*aZ*aZ*aZ+
196 1.95687*1e-8*aZ*aZ*aZ*aZ)/G4double(theA);
197 }
198 return C;
199}
200
201
203{
204 //JMQ 190709 values according to Furihata's paper (based on notes added
205 //on proof in Dostrovskii's paper)
206 G4double res;
207 if(GetZ_asInt() == 0) {
208 res = 0.76+1.93/fG4pow->Z13(fragment.GetA_asInt()-GetA_asInt());
209 } else {
210 res = 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ_asInt());
211 }
212 return res;
213}
214
215inline G4double
217{
218 //JMQ 190709 values according to Furihata's paper (based on notes added
219 //on proof in Dostrovskii's paper)
220 G4double res;
221 if(GetZ_asInt() == 0) {
222 res = (1.66/fG4pow->Z23(fragment.GetA_asInt()-GetA_asInt())-0.05)*CLHEP::MeV/
223 CalcAlphaParam(fragment);
224 } else {
225 res = -GetCoulombBarrier(fragment);
226 }
227 return res;
228}
229
230inline G4double G4GEMProbability::I0(G4double t)
231{
232 return std::exp(t) - 1.0;
233}
234
235inline G4double G4GEMProbability::I1(G4double t, G4double tx)
236{
237 return (t - tx + 1.0)*std::exp(tx) - t - 1.0;
238}
239
240
241inline G4double G4GEMProbability::I2(G4double s0, G4double sx)
242{
243 G4double S = 1.0/std::sqrt(s0);
244 G4double Sx = 1.0/std::sqrt(sx);
245
246 G4double p1 = S*S*S*( 1.0 + S*S*( 1.5 + 3.75*S*S) );
247 G4double p2 = Sx*Sx*Sx*( 1.0 + Sx*Sx*( 1.5 + 3.75*Sx*Sx) )*std::exp(sx-s0);
248
249 return p1-p2;
250}
251
252
253#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double GetCoulombBarrier(const G4Fragment &fragment) const
std::vector< G4double > ExcitSpins
G4double GetNormalization(void) const
std::vector< G4double > ExcitEnergies
G4int GetA_asInt(void) const
virtual ~G4GEMProbability()
G4double GetA(void) const
G4double CalcAlphaParam(const G4Fragment &) const
std::vector< G4double > ExcitLifetimes
G4double GetZ(void) const
G4double CalcBetaParam(const G4Fragment &) const
G4int GetZ_asInt(void) const
G4double GetSpin(void) const
void SetCoulomBarrier(const G4VCoulombBarrier *aCoulombBarrierStrategy)
G4double EmissionProbability(const G4Fragment &fragment, G4double anEnergy)
G4double GetPairingCorrection(G4int A, G4int Z) const
Definition: G4Pow.hh:54
G4double Z23(G4int Z)
Definition: G4Pow.hh:134
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
virtual G4double GetCoulombBarrier(G4int ARes, G4int ZRes, G4double U) const =0