Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronHElasticPhysics.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28//---------------------------------------------------------------------------
29//
30// ClassName: G4HadronHElasticPhysics
31//
32// Author: 23 November 2006 V. Ivanchenko
33//
34// Modified:
35// 21.03.07 (V.Ivanchenko) Use G4BGGNucleonElasticXS and G4BGGPionElasticXS;
36// Reduce thresholds for HE and Q-models to zero
37// 03.06.2010 V.Ivanchenko cleanup constructors and ConstructProcess method
38//
39//----------------------------------------------------------------------------
40//
41// CHIPS for sampling scattering for p and n
42// Glauber model for samplimg of high energy pi+- (E > 1GeV)
43// LHEP sampling model for the other particle
44// BBG cross sections for p, n and pi+-
45// LHEP cross sections for other particles
46
48
49#include "G4SystemOfUnits.hh"
51#include "G4ProcessManager.hh"
52
53#include "G4MesonConstructor.hh"
55#include "G4IonConstructor.hh"
56#include "G4Neutron.hh"
57
59#include "G4HadronElastic.hh"
60#include "G4CHIPSElastic.hh"
62#include "G4AntiNuclElastic.hh"
63
65#include "G4BGGPionElasticXS.hh"
66#include "G4NeutronElasticXS.hh"
67#include "G4CHIPSElasticXS.hh"
68
71
72// factory
74//
76
77
79 : G4VPhysicsConstructor("hElasticWEL_CHIPS"), verbose(ver),
80 wasActivated(false)
81{
82 // if(verbose > 1) {
83 G4cout << "### G4HadronHElasticPhysics: " << GetPhysicsName()
84 << " is obsolete and soon will be removed" << G4endl;
85}
86
88 const G4String&)
89 : G4VPhysicsConstructor("hElasticWEL_CHIPS"), verbose(ver),
90 wasActivated(false)
91{
92 if(verbose > 1) {
93 G4cout << "### G4HadronHElasticPhysics: " << GetPhysicsName()
94 << G4endl;
95 }
96}
97
99{}
100
102{
103 // G4cout << "G4HadronElasticPhysics::ConstructParticle" << G4endl;
104 G4MesonConstructor pMesonConstructor;
105 pMesonConstructor.ConstructParticle();
106
107 G4BaryonConstructor pBaryonConstructor;
108 pBaryonConstructor.ConstructParticle();
109
110 // Construct light ions
111 G4IonConstructor pConstructor;
112 pConstructor.ConstructParticle();
113}
114
116{
117 if(wasActivated) { return; }
118 wasActivated = true;
119
120 G4double elimitPi = 1.0*GeV;
121 G4double elimitAntiNuc = 100*MeV;
122 if(verbose > 1) {
123 G4cout << "### HadronElasticPhysics Construct Processes with the limit for pi "
124 << elimitPi/GeV << " GeV"
125 << " for anti-neuclei "
126 << elimitAntiNuc/GeV << " GeV" << G4endl;
127 }
128
130 anuc->SetMinEnergy(elimitAntiNuc);
131 G4CrossSectionElastic* anucxs =
133
134 G4HadronElastic* lhep0 = new G4HadronElastic();
135 G4HadronElastic* lhep1 = new G4HadronElastic();
136 G4HadronElastic* lhep2 = new G4HadronElastic();
137 lhep1->SetMaxEnergy(elimitPi);
138 lhep2->SetMaxEnergy(elimitAntiNuc);
139
140 G4CHIPSElastic* chipsp = new G4CHIPSElastic();
141 G4HadronElastic* neutronModel = new G4CHIPSElastic();
142
144 he->SetMinEnergy(elimitPi);
145
147 while( (*theParticleIterator)() )
148 {
150 G4ProcessManager* pmanager = particle->GetProcessManager();
151 G4String pname = particle->GetParticleName();
152 if(pname == "anti_lambda" ||
153 pname == "anti_neutron" ||
154 pname == "anti_omega-" ||
155 pname == "anti_sigma-" ||
156 pname == "anti_sigma+" ||
157 pname == "anti_xi-" ||
158 pname == "anti_xi0" ||
159 pname == "lambda" ||
160 pname == "omega-" ||
161 pname == "sigma-" ||
162 pname == "sigma+" ||
163 pname == "xi-" ||
164 pname == "alpha" ||
165 pname == "deuteron" ||
166 pname == "triton"
167 ) {
168
170 hel->RegisterMe(lhep0);
171 pmanager->AddDiscreteProcess(hel);
172 if(verbose > 1) {
173 G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
174 << " added for " << particle->GetParticleName() << G4endl;
175 }
176
177 } else if(pname == "proton") {
178
180 //hel->AddDataSet(new G4BGGNucleonElasticXS(particle));
181 hel->AddDataSet(new G4CHIPSElasticXS());
182 hel->RegisterMe(chipsp);
183 pmanager->AddDiscreteProcess(hel);
184 if(verbose > 1) {
185 G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
186 << " added for " << particle->GetParticleName() << G4endl;
187 }
188
189 } else if(pname == "neutron") {
190
192 //hel->AddDataSet(new G4NeutronElasticXS());
193 //hel->AddDataSet(new G4BGGNucleonElasticXS(particle));
194 hel->AddDataSet(new G4CHIPSElasticXS());
195 hel->RegisterMe(neutronModel);
196 pmanager->AddDiscreteProcess(hel);
197 if(verbose > 1) {
198 G4cout << "### HadronElasticPhysics: "
199 << hel->GetProcessName()
200 << " added for " << particle->GetParticleName() << G4endl;
201 }
202
203 } else if (pname == "pi+" || pname == "pi-") {
204
206 hel->AddDataSet(new G4CHIPSElasticXS());
207 //hel->AddDataSet(new G4BGGPionElasticXS(particle));
208 hel->RegisterMe(lhep1);
209 hel->RegisterMe(he);
210 pmanager->AddDiscreteProcess(hel);
211 if(verbose > 1) {
212 G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
213 << " added for " << particle->GetParticleName() << G4endl;
214 }
215
216 } else if(pname == "kaon-" ||
217 pname == "kaon+" ||
218 pname == "kaon0S" ||
219 pname == "kaon0L"
220 ) {
221
223 hel->RegisterMe(lhep0);
224 hel->AddDataSet(new G4CHIPSElasticXS());
225 pmanager->AddDiscreteProcess(hel);
226 if(verbose > 1) {
227 G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
228 << " added for " << particle->GetParticleName() << G4endl;
229 }
230
231 } else if(
232 pname == "anti_proton" ||
233 pname == "anti_alpha" ||
234 pname == "anti_deuteron" ||
235 pname == "anti_triton" ||
236 pname == "anti_He3" ) {
237
239 hel->AddDataSet(anucxs);
240 hel->RegisterMe(lhep2);
241 hel->RegisterMe(anuc);
242 pmanager->AddDiscreteProcess(hel);
243 }
244 }
245}
246
247
#define G4_DECLARE_PHYSCONSTR_FACTORY(physics_constructor)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4ComponentAntiNuclNuclearXS * GetComponentCrossSection()
static void ConstructParticle()
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
void RegisterMe(G4HadronicInteraction *a)
static void ConstructParticle()
static void ConstructParticle()
G4ProcessManager * GetProcessManager() const
const G4String & GetParticleName() const
G4int AddDiscreteProcess(G4VProcess *aProcess, G4int ord=ordDefault)
const G4String & GetPhysicsName() const
G4ParticleTable::G4PTblDicIterator * theParticleIterator
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379