Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PreCompoundFragment.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// J. M. Quesada (August 2008).
29// Based on previous work by V. Lara
30//
31// Modified:
32// 06.09.2008 JMQ Also external choice has been added for:
33// - superimposed Coulomb barrier (if useSICB=true)
34// 20.08.2010 V.Ivanchenko cleanup
35//
36
38
39G4PreCompoundFragment::
40G4PreCompoundFragment(const G4ParticleDefinition* part,
41 G4VCoulombBarrier* aCoulombBarrier)
42 : G4VPreCompoundFragment(part,aCoulombBarrier)
43{}
44
46{}
47
49CalcEmissionProbability(const G4Fragment & aFragment)
50{
51 //G4cout << theCoulombBarrier << " " << GetMaximalKineticEnergy() << G4endl;
52 // If theCoulombBarrier effect is included in the emission probabilities
53 //if (GetMaximalKineticEnergy() <= 0.0)
54 G4double limit = 0.0;
55 if(OPTxs==0 || useSICB) { limit = theCoulombBarrier; }
56 if (GetMaximalKineticEnergy() <= limit)
57 {
59 return 0.0;
60 }
61 // If theCoulombBarrier effect is included in the emission probabilities
62 // G4double LowerLimit = 0.;
63 // Coulomb barrier is the lower limit
64 // of integration over kinetic energy
65 G4double LowerLimit = limit;
66
67 // Excitation energy of nucleus after fragment emission is the upper
68 //limit of integration over kinetic energy
69 G4double UpperLimit = GetMaximalKineticEnergy();
70
72 IntegrateEmissionProbability(LowerLimit,UpperLimit,aFragment);
73 /*
74 G4cout << "## G4PreCompoundFragment::CalcEmisProb "
75 << "Z= " << aFragment.GetZ_asInt()
76 << " A= " << aFragment.GetA_asInt()
77 << " Elow= " << LowerLimit/MeV
78 << " Eup= " << UpperLimit/MeV
79 << " prob= " << theEmissionProbability
80 << G4endl;
81 */
83}
84
85G4double G4PreCompoundFragment::
86IntegrateEmissionProbability(G4double Low, G4double Up,
87 const G4Fragment & aFragment)
88{
89 static const G4int N = 10;
90 // 10-Points Gauss-Legendre abcisas and weights
91 static const G4double w[N] = {
92 0.0666713443086881,
93 0.149451349150581,
94 0.219086362515982,
95 0.269266719309996,
96 0.295524224714753,
97 0.295524224714753,
98 0.269266719309996,
99 0.219086362515982,
100 0.149451349150581,
101 0.0666713443086881
102 };
103 static const G4double x[N] = {
104 -0.973906528517172,
105 -0.865063366688985,
106 -0.679409568299024,
107 -0.433395394129247,
108 -0.148874338981631,
109 0.148874338981631,
110 0.433395394129247,
111 0.679409568299024,
112 0.865063366688985,
113 0.973906528517172
114 };
115
116 G4double Total = 0.0;
117
118 for (G4int i = 0; i < N; ++i)
119 {
120 G4double KineticE = 0.5*((Up-Low)*x[i]+(Up+Low));
121 Total += w[i]*ProbabilityDistributionFunction(KineticE, aFragment);
122 }
123 Total *= 0.5*(Up-Low);
124 return Total;
125}
126
128GetKineticEnergy(const G4Fragment & aFragment)
129{
130 //let's keep this way for consistency with CalcEmissionProbability method
131 G4double V = 0.0;
132 if(OPTxs==0 || useSICB) { V = theCoulombBarrier; }
133
135 if(Tmax < V) { return 0.0; }
136 G4double T(0.0);
137 G4double Probability(1.0);
138 G4double maxProbability = GetEmissionProbability();
139 do
140 {
141 T = V + G4UniformRand()*(Tmax-V);
142 Probability = ProbabilityDistributionFunction(T,aFragment);
143 } while (maxProbability*G4UniformRand() > Probability);
144 return T;
145}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
G4double CalcEmissionProbability(const G4Fragment &aFragment)
G4double GetKineticEnergy(const G4Fragment &aFragment)
virtual G4double ProbabilityDistributionFunction(G4double K, const G4Fragment &aFragment)=0
G4double GetEmissionProbability() const
G4double GetMaximalKineticEnergy() const