Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ConicalSurface.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// ----------------------------------------------------------------------
30// Class G4ConicalSurface
31//
32// Class Description:
33//
34// A G4ConicalSurface is a semi-infinite conical surface defined by
35// an axis and an opening angle, defined as the angle between the axis
36// and the conical surface, with the origin being the apex of the cone.
37
38// The code for G4ConicalSurface has been derived from the original
39// implementation in the "Gismo" package.
40//
41// Author: A.Breakstone
42// Adaptation: J.Sulkimo, P.Urban.
43// Revisions by: L.Broglia, G.Cosmo.
44// ----------------------------------------------------------------------
45#ifndef __G4CONICALSURFACE_H
46#define __G4CONICALSURFACE_H
47
48#include "G4Surface.hh"
49
50
52{
53
54public: // with description
55
57 // Default constructor:
58 // default axis is ( 1.0, 0.0, 0.0 ),
59 // default angle is 1.0 radians.
60
61 G4ConicalSurface( const G4Point3D& o, const G4Vector3D& a, G4double e );
62 // Normal constructor:
63 // first argument is the origin of the G4ConicalSurface
64 // second argument is the axis of the G4ConicalSurface
65 // third argument is the angle of the G4ConicalSurface.
66
67 virtual ~G4ConicalSurface();
68 // Virtual destructor.
69
70 inline G4int operator==( const G4ConicalSurface& c );
71 // Equality operator.
72
73 inline G4String GetEntityType() const;
74 // Returns type identifier of the shape.
75
76 virtual const char* NameOf() const;
77 // Returns the class name.
78
79 virtual void PrintOn( std::ostream& os = G4cout ) const;
80 // Printing function, streaming surface's attributes.
81
82 virtual G4double HowNear( const G4Vector3D& x ) const;
83 // Returns the distance from a point to a semi-infinite G4ConicalSurface.
84 // The point x is the (input) argument.
85 // The distance is positive if the point is Inside, negative if it
86 // is outside
87
88 void CalcBBox();
89 // Computes the bounding-box.
90
91 G4int Intersect( const G4Ray& ry );
92 // Returns the distance along a Ray (straight line with G4Vector3D) to
93 // leave or enter a G4ConicalSurface.
94 // If the G4Vector3D of the Ray is opposite to that of the Normal to
95 // the G4ConicalSurface at the intersection point, it will not leave the
96 // G4ConicalSurface.
97 // Similarly, if the G4Vector3D of the Ray is along that of the Normal
98 // to the G4ConicalSurface at the intersection point, it will not enter the
99 // G4ConicalSurface.
100 // This method is called by all finite shapes sub-classed to
101 // G4ConicalSurface.
102 // A negative result means no intersection.
103 // If no valid intersection point is found, set the distance
104 // and intersection point to large numbers.
105
106 virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const;
107 // Returns the Normal unit vector to the G4ConicalSurface at a point p
108 // on (or nearly on) the G4ConicalSurface.
109
110 virtual G4int Inside( const G4Vector3D& x ) const;
111 // Returns 1 if the point x is Inside the G4ConicalSurface, 0 otherwise.
112 // Outside means that the distance to the G4ConicalSurface would be
113 // negative. Uses the HowNear() function to calculate this distance.
114
115 virtual G4int WithinBoundary( const G4Vector3D& x ) const;
116 // Returns 1 if point x is on the G4ConicalSurface, otherwise return zero
117 // Since a G4ConicalSurface is infinite in extent, the function
118 // will just check if the point is on the G4ConicalSurface (to the surface
119 // precision).
120
121 virtual G4double Scale() const;
122 // Function overwritten by finite-sized derived classes which returns
123 // a radius, unless it is zero, in which case it returns the smallest
124 // non-zero dimension.
125 // Since a semi-infinite cone has no Scale associated with it, it returns
126 // the arbitrary number 1.0.
127 // Used for Scale-invariant tests of surface thickness.
128
129 inline G4Vector3D GetAxis() const;
130 inline G4double GetAngle() const;
131 // Return the axis and angle of the G4ConicalSurface.
132
133 void SetAngle( G4double e );
134 // Changes the angle of the G4ConicalSurface.
135 // Requires angle to range from 0 to PI/2.
136
137public: // without description
138
139/*
140 virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry,
141 G4Vector3D& p ) const;
142 // Returns the distance along a Ray to enter or leave a G4ConicalSurface.
143 // The first (input) argument is +1 to leave or -1 to enter
144 // The second (input) argument is a pointer to the Ray
145 // The third (output) argument returns the intersection point.
146
147 virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx,
148 G4Vector3D& p ) const;
149 // Returns the distance along a Helix to enter or leave a G4ConicalSurface.
150 // The first (input) argument is +1 to leave or -1 to enter
151 // The second (input) argument is a pointer to the Helix
152 // The third (output) argument returns the intersection point.
153
154 G4Vector3D Normal( const G4Vector3D& p ) const;
155 // Returns the Normal unit vector to a G4ConicalSurface
156 // at a point p on (or nearly on) the G4ConicalSurface.
157
158 virtual void rotate( G4double alpha, G4double beta,
159 G4double gamma, G4ThreeMat& m, G4int inverse );
160 // Rotates the G4ConicalSurface (angles are assumed to be given in
161 // radians), arguments:
162 // - first about global x-axis by angle alpha,
163 // - second about global y-axis by angle beta,
164 // - third about global z-axis by angle gamma,
165 // - fourth (output) argument gives the calculated rotation matrix,
166 // - fifth (input) argument is an integer flag which if
167 // non-zero reverses the order of the rotations.
168
169 virtual void rotate( G4double alpha, G4double beta,
170 G4double gamma, G4int inverse );
171 // Rotates the G4ConicalSurface (angles are assumed to be given in
172 // radians), arguments:
173 // - first about global x-axis by angle alpha,
174 // - second about global y-axis by angle beta,
175 // - third about global z-axis by angle gamma,
176 // - fourth (input) argument is an integer flag which if
177 // non-zero reverses the order of the rotations.
178
179private:
180
181 virtual G4double gropeAlongHelix( const Helix* hx ) const;
182 // Private function to use a crude technique to find the intersection
183 // of a Helix with a G4ConicalSurface. It returns the turning angle
184 // along the Helix at which the intersection occurs or -1.0 if no
185 // intersection point is found.
186 // The argument to the call is the pointer to the Helix.
187*/
188
189private:
190
192 G4ConicalSurface& operator=(const G4ConicalSurface&);
193 // Private copy constructor and assignment operator.
194
195private:
196
197 G4Vector3D axis;
198 // Direction of axis of G4ConicalSurface (unit vector).
199
200 G4double angle;
201 // Half opening angle of G4ConicalSurface, in radians
202 // range is 0 < angle < PI/2.
203
204};
205
206#include "G4ConicalSurface.icc"
207
208#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4DLLIMPORT std::ostream G4cout
virtual void PrintOn(std::ostream &os=G4cout) const
G4String GetEntityType() const
G4int operator==(const G4ConicalSurface &c)
G4int Intersect(const G4Ray &ry)
virtual G4Vector3D SurfaceNormal(const G4Point3D &p) const
virtual G4int WithinBoundary(const G4Vector3D &x) const
virtual G4int Inside(const G4Vector3D &x) const
virtual G4double HowNear(const G4Vector3D &x) const
G4Vector3D GetAxis() const
G4double GetAngle() const
virtual ~G4ConicalSurface()
void SetAngle(G4double e)
virtual G4double Scale() const
virtual const char * NameOf() const
Definition: G4Ray.hh:49