Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GaussJacobiQ.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29#include "G4GaussJacobiQ.hh"
30
31
32// -------------------------------------------------------------
33//
34// Constructor for Gauss-Jacobi integration method.
35//
36
38 G4double alpha,
39 G4double beta,
40 G4int nJacobi )
41 : G4VGaussianQuadrature(pFunction)
42
43{
44 const G4double tolerance = 1.0e-12 ;
45 const G4double maxNumber = 12 ;
46 G4int i=1, k=1 ;
47 G4double root=0.;
48 G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0,
49 root1=0.0, root2=0.0, root3=0.0 ;
50 G4double a=0.0, b=0.0, c=0.0,
51 newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0,
52 temp=0.0, rootTemp=0.0 ;
53
54 fNumber = nJacobi ;
56 fWeight = new G4double[fNumber] ;
57
58 for (i=1;i<=nJacobi;i++)
59 {
60 if (i == 1)
61 {
62 alphaReduced = alpha/nJacobi ;
63 betaReduced = beta/nJacobi ;
64 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
65 0.767999*alphaReduced/nJacobi) ;
66 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced
67 + 0.451998*alphaReduced*alphaReduced
68 + 0.83001*alphaReduced*betaReduced ;
69 root = 1.0-root1/root2 ;
70 }
71 else if (i == 2)
72 {
73 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ;
74 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ;
75 root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
76 root -= (1.0-root)*root1*root2*root3 ;
77 }
78 else if (i == 3)
79 {
80 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ;
81 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
82 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
83 root -= (fAbscissa[0]-root)*root1*root2*root3 ;
84 }
85 else if (i == nJacobi-1)
86 {
87 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
88 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
89 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ;
90 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ;
91 }
92 else if (i == nJacobi)
93 {
94 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
95 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
96 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ;
97 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ;
98 }
99 else
100 {
101 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ;
102 }
103 alphaBeta = alpha + beta ;
104 for (k=1;k<=maxNumber;k++)
105 {
106 temp = 2.0 + alphaBeta ;
107 newton1 = (alpha-beta+temp*root)/2.0 ;
108 newton2 = 1.0 ;
109 for (G4int j=2;j<=nJacobi;j++)
110 {
111 newton3 = newton2 ;
112 newton2 = newton1 ;
113 temp = 2*j+alphaBeta ;
114 a = 2*j*(j+alphaBeta)*(temp-2.0) ;
115 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
116 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ;
117 newton1 = (b*newton2-c*newton3)/a ;
118 }
119 newton0 = (nJacobi*(alpha - beta - temp*root)*newton1 +
120 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/
121 (temp*(1.0 - root*root)) ;
122 rootTemp = root ;
123 root = rootTemp - newton1/newton0 ;
124 if (std::fabs(root-rootTemp) <= tolerance)
125 {
126 break ;
127 }
128 }
129 if (k > maxNumber)
130 {
131 G4Exception("G4GaussJacobiQ::G4GaussJacobiQ()", "OutOfRange",
132 FatalException, "Too many iterations in constructor.") ;
133 }
134 fAbscissa[i-1] = root ;
135 fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) +
136 GammaLogarithm((G4double)(beta+nJacobi)) -
137 GammaLogarithm((G4double)(nJacobi+1.0)) -
138 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0)))
139 *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ;
140 }
141}
142
143
144// ----------------------------------------------------------
145//
146// Gauss-Jacobi method for integration of
147// ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
148// from minus unit to plus unit .
149
150
153{
154 G4double integral = 0.0 ;
155 for(G4int i=0;i<fNumber;i++)
156 {
157 integral += fWeight[i]*fFunction(fAbscissa[i]) ;
158 }
159 return integral ;
160}
161
G4double(* function)(G4double)
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double Integral() const
G4GaussJacobiQ(function pFunction, G4double alpha, G4double beta, G4int nJacobi)
G4double GammaLogarithm(G4double xx)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41