Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RegularXTRadiator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29
30#include <complex>
31
34#include "Randomize.hh"
35
36#include "G4Gamma.hh"
37
38////////////////////////////////////////////////////////////////////////////
39//
40// Constructor, destructor
41
43 G4Material* foilMat,G4Material* gasMat,
44 G4double a, G4double b, G4int n,
45 const G4String& processName) :
46 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
47{
48 G4cout<<"Regular X-ray TR radiator EM process is called"<<G4endl ;
49
50 // Build energy and angular integral spectra of X-ray TR photons from
51 // a radiator
52
53 fAlphaPlate = 10000;
54 fAlphaGas = 1000;
55 G4cout<<"fAlphaPlate = "<<fAlphaPlate<<" ; fAlphaGas = "<<fAlphaGas<<G4endl ;
56
57 // BuildTable() ;
58}
59
60///////////////////////////////////////////////////////////////////////////
61
63{
64 ;
65}
66
67///////////////////////////////////////////////////////////////////////////
68//
69//
70
72{
73 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k;
74 G4double aMa, bMb ,sigma, dump;
75 G4int k, kMax, kMin;
76
78 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
79 sigma = 0.5*(aMa + bMb);
80 dump = std::exp(-fPlateNumber*sigma);
81 if(verboseLevel > 2) G4cout<<" dump = "<<dump<<G4endl;
82 cofPHC = 4*pi*hbarc;
83 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
84 cof1 = fPlateThick*tmp;
85 cof2 = fGasThick*tmp;
86
87 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
88 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
89 cofMin /= cofPHC;
90
91 theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
92
93 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
94 // else kMin = 1;
95
96
97 kMin = G4int(cofMin);
98 if (cofMin > kMin) kMin++;
99
100 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
101 // tmp /= cofPHC;
102 // kMax = G4int(tmp);
103 // if(kMax < 0) kMax = 0;
104 // kMax += kMin;
105
106
107 kMax = kMin + 49; // 19; // kMin + G4int(tmp);
108
109 // tmp /= fGamma;
110 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
111
112 if(verboseLevel > 2)
113 {
114 G4cout<<cof1<<" "<<cof2<<" "<<cofMin<<G4endl;
115 G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
116 }
117 for( k = kMin; k <= kMax; k++ )
118 {
119 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
120 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
121 // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
122 if( k == kMin && kMin == G4int(cofMin) )
123 {
124 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
125 }
126 else
127 {
128 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
129 }
130 theta2k = std::sqrt(theta2*std::abs(k-cofMin));
131
132 if(verboseLevel > 2)
133 {
134 // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
135 // <<"; sum = "<<sum<<G4endl;
136 G4cout<<k<<" "<<theta2k<<" "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
137 <<" "<<sum<<G4endl;
138 }
139 }
140 result = 2*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
141 // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );
142 // fPlateNumber;
143 result *= ( 1 - dump + 2*dump*fPlateNumber );
144 /*
145 fEnergy = energy;
146 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
147 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
148
149 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
150 0.0,0.3*fMaxThetaTR) +
151 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
152 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
153 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
154 0.6*fMaxThetaTR,fMaxThetaTR) ;
155 result += tmp;
156 */
157 return result;
158}
159
160
161
162///////////////////////////////////////////////////////////////////////////
163//
164// Approximation for radiator interference factor for the case of
165// fully Regular radiator. The plate and gas gap thicknesses are fixed .
166// The mean values of the plate and gas gap thicknesses
167// are supposed to be about XTR formation zones but much less than
168// mean absorption length of XTR photons in coresponding material.
169
172 G4double gamma, G4double varAngle )
173{
174
175 // some gamma (10000/1000) like algorithm
176
177 G4double result, Za, Zb, Ma, Mb;
178
179 Za = GetPlateFormationZone(energy,gamma,varAngle);
180 Zb = GetGasFormationZone(energy,gamma,varAngle);
181
182 Ma = GetPlateLinearPhotoAbs(energy);
183 Mb = GetGasLinearPhotoAbs(energy);
184
185
188
189 G4complex Ha = std::pow(Ca,-fAlphaPlate);
190 G4complex Hb = std::pow(Cb,-fAlphaGas);
191 G4complex H = Ha*Hb;
192
193 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
195
196 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
197 * (1.0 - std::pow(H,fPlateNumber));
198
199 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
200
201 result = 2.0*std::real(R);
202
203 return result;
204
205 /*
206 // numerically stable but slow algorithm
207
208 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb; // , D;
209
210 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
211 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
212 aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
213 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
214 Qa = std::exp(-aMa);
215 Qb = std::exp(-bMb);
216 Q = Qa*Qb;
217 G4complex Ha( std::exp(-0.5*aMa)*std::cos(aZa),
218 -std::exp(-0.5*aMa)*std::sin(aZa) );
219 G4complex Hb( std::exp(-0.5*bMb)*std::cos(bZb),
220 -std::exp(-0.5*bMb)*std::sin(bZb) );
221 G4complex H = Ha*Hb;
222
223 G4complex Hs = conj(H);
224 D = 1.0 /( (1 - std::sqrt(Q))*(1 - std::sqrt(Q)) +
225 4*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) );
226 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
227 * G4double(fPlateNumber)*D;
228 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb*(1.0-Hs)*(1.0-Hs)
229 * (1.0 - std::pow(H,fPlateNumber)) * D*D;
230 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
231
232
233 G4complex S(0.,0.), c(1.,0.);
234 G4int k;
235 for(k = 1; k < fPlateNumber; k++)
236 {
237 c *= H;
238 S += ( G4double(fPlateNumber) - G4double(k) )*c;
239 }
240 G4complex R = (2.- Ha - 1./Ha)*S + (1. - Ha)*G4double(fPlateNumber);
241 R *= OneInterfaceXTRdEdx(energy,gamma,varAngle);
242 result = 2.0*std::real(R);
243 return result;
244 */
245}
246
247
248//
249//
250////////////////////////////////////////////////////////////////////////////
251
252
253
254
255
256
257
258
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
std::complex< G4double > G4complex
Definition: G4Types.hh:69
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4RegularXTRadiator(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRegularRadiator")
G4double SpectralXTRdEdx(G4double energy)
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)