Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DataInterpolation.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Class description:
30//
31// The class consists of some methods for data interpolations and extrapolations.
32// The methods based mainly on recommendations given in the book : An introduction to
33// NUMERICAL METHODS IN C++, B.H. Flowers, Claredon Press, Oxford, 1995
34//
35// ------------------------------ Data members: ---------------------------------
36//
37// fArgument and fFunction - pointers to data table to be interpolated
38// for y[i] and x[i] respectively
39// fNumber - the corresponding table size
40// ......
41// G4DataInterpolation( G4double pX[], G4double pY[], G4int number )
42//
43// Constructor for initializing of fArgument, fFunction and fNumber data members:
44// ......
45// G4DataInterpolation( G4double pX[], G4double pY[], G4int number,
46// G4double pFirstDerStart, G4double pFirstDerFinish )
47//
48// Constructor for cubic spline interpolation. It creates the array
49// fSecondDerivative[0,...fNumber-1] which is used in this interpolation by
50// the function:
51// ....
52// ~G4DataInterpolation()
53//
54// Destructor deletes dynamically created arrays for data members: fArgument,
55// fFunction and fSecondDerivative, all have dimension of fNumber
56//
57// ------------------------------ Methods: ----------------------------------------
58//
59// G4double PolynomInterpolation(G4double pX, G4double& deltaY ) const
60//
61// This function returns the value P(pX), where P(x) is polynom of fNumber-1 degree
62// such that P(fArgument[i]) = fFunction[i], for i = 0, ..., fNumber-1 .
63// ........
64// void PolIntCoefficient( G4double cof[]) const
65//
66// Given arrays fArgument[0,..,fNumber-1] and fFunction[0,..,fNumber-1] , this
67// function calculates an array of coefficients. The coefficients don't provide
68// usually (fNumber>10) better accuracy for polynom interpolation, as compared with
69// PolynomInterpolation function. They could be used instead for derivate
70// calculations and some other applications.
71// .........
72// G4double RationalPolInterpolation(G4double pX, G4double& deltaY ) const
73//
74// The function returns diagonal rational function (Bulirsch and Stoer algorithm
75// of Neville type) Pn(x)/Qm(x) where P and Q are polynoms.
76// Tests showed the method is not stable and hasn't advantage if compared with
77// polynomial interpolation
78// ................
79// G4double CubicSplineInterpolation(G4double pX) const
80//
81// Cubic spline interpolation in point pX for function given by the table:
82// fArgument, fFunction. The constructor, which creates fSecondDerivative, must be
83// called before. The function works optimal, if sequential calls are in random
84// values of pX.
85// ..................
86// G4double FastCubicSpline(G4double pX, G4int index) const
87//
88// Return cubic spline interpolation in the point pX which is located between
89// fArgument[index] and fArgument[index+1]. It is usually called in sequence of
90// known from external analysis values of index.
91// .........
92// G4int LocateArgument(G4double pX) const
93//
94// Given argument pX, returns index k, so that pX bracketed by fArgument[k] and
95// fArgument[k+1]
96// ......................
97// void CorrelatedSearch( G4double pX, G4int& index ) const
98//
99// Given a value pX, returns a value 'index' such that pX is between fArgument[index]
100// and fArgument[index+1]. fArgument MUST BE MONOTONIC, either increasing or
101// decreasing. If index = -1 or fNumber, this indicates that pX is out of range.
102// The value index on input is taken as the initial approximation for index on
103// output.
104
105// --------------------------------- History: --------------------------------------
106//
107// 3.4.97 V.Grichine ([email protected])
108//
109
110
111#ifndef G4DATAINTERPOLATION_HH
112#define G4DATAINTERPOLATION_HH
113
114#include "globals.hh"
115
117{
118public:
120 G4double pY[],
121 G4int number );
122
123// Constructor for cubic spline interpolation. It creates fSecond Deivative array
124// as well as fArgument and fFunction
125
127 G4double pY[],
128 G4int number,
129 G4double pFirstDerStart,
130 G4double pFirstDerFinish ) ;
131
133
135 G4double& deltaY ) const ;
136
137 void PolIntCoefficient( G4double cof[]) const ;
138
140 G4double& deltaY ) const ;
141
143
145 G4int index ) const ;
146
147 G4int LocateArgument( G4double pX ) const ;
148
149 void CorrelatedSearch( G4double pX,
150 G4int& index ) const ;
151
152private:
153
155 G4DataInterpolation& operator=(const G4DataInterpolation&);
156
157private:
158 G4double* fArgument ;
159 G4double* fFunction ;
160 G4double* fSecondDerivative ;
161 G4int fNumber ;
162} ;
163
164#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double RationalPolInterpolation(G4double pX, G4double &deltaY) const
void CorrelatedSearch(G4double pX, G4int &index) const
G4double FastCubicSpline(G4double pX, G4int index) const
G4double PolynomInterpolation(G4double pX, G4double &deltaY) const
G4int LocateArgument(G4double pX) const
G4double CubicSplineInterpolation(G4double pX) const
void PolIntCoefficient(G4double cof[]) const