Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsHyperonElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// G4 Physics class: G4ChipsHyperonElasticXS for pA elastic cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
33//
34// -------------------------------------------------------------------------------
35// Short description: Interaction cross-sections for the elastic process.
36// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37// -------------------------------------------------------------------------------
38//
39
41#include "G4SystemOfUnits.hh"
42#include "G4DynamicParticle.hh"
44#include "G4Lambda.hh"
45#include "G4SigmaPlus.hh"
46#include "G4SigmaMinus.hh"
47#include "G4SigmaZero.hh"
48#include "G4XiMinus.hh"
49#include "G4XiZero.hh"
50#include "G4OmegaMinus.hh"
51#include "G4Nucleus.hh"
52#include "G4ParticleTable.hh"
53#include "G4NucleiProperties.hh"
54
55// factory
57//
59
60G4ChipsHyperonElasticXS::G4ChipsHyperonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
61{
62 lPMin=-8.; //Min tabulatedLogarithmMomentum(D)
63 lPMax= 8.; //Max tabulatedLogarithmMomentum(D)
64 dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
65 onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
66 lastSIG=0.; //Last calculated cross section (L)
67 lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
68 lastTM=0.; //Last t_maximum (L)
69 theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
70 theS1=0.; //TheLastMantissa of 1st difrMax(L)
71 theB1=0.; //TheLastSlope of 1st difructMax(L)
72 theS2=0.; //TheLastMantissa of 2nd difrMax(L)
73 theB2=0.; //TheLastSlope of 2nd difructMax(L)
74 theS3=0.; //TheLastMantissa of 3d difr.Max(L)
75 theB3=0.; //TheLastSlope of 3d difruct.Max(L)
76 theS4=0.; //TheLastMantissa of 4th difrMax(L)
77 theB4=0.; //TheLastSlope of 4th difructMax(L)
78 lastTZ=0; // Last atomic number of the target
79 lastTN=0; // Last # of neutrons in the target
80 lastPIN=0.; // Last initialized max momentum
81 lastCST=0; // Elastic cross-section table
82 lastPAR=0; // ParametersForFunctionCalculation
83 lastSST=0; // E-dep ofSqardSlope of 1st difMax
84 lastS1T=0; // E-dep of mantissa of 1st dif.Max
85 lastB1T=0; // E-dep of the slope of 1st difMax
86 lastS2T=0; // E-dep of mantissa of 2nd difrMax
87 lastB2T=0; // E-dep of the slope of 2nd difMax
88 lastS3T=0; // E-dep of mantissa of 3d difr.Max
89 lastB3T=0; // E-dep of the slope of 3d difrMax
90 lastS4T=0; // E-dep of mantissa of 4th difrMax
91 lastB4T=0; // E-dep of the slope of 4th difMax
92 lastN=0; // The last N of calculated nucleus
93 lastZ=0; // The last Z of calculated nucleus
94 lastP=0.; // LastUsed inCrossSection Momentum
95 lastTH=0.; // Last threshold momentum
96 lastCS=0.; // Last value of the Cross Section
97 lastI=0; // The last position in the DAMDB
98}
99
101{
102 std::vector<G4double*>::iterator pos;
103 for (pos=CST.begin(); pos<CST.end(); pos++)
104 { delete [] *pos; }
105 CST.clear();
106 for (pos=PAR.begin(); pos<PAR.end(); pos++)
107 { delete [] *pos; }
108 PAR.clear();
109 for (pos=SST.begin(); pos<SST.end(); pos++)
110 { delete [] *pos; }
111 SST.clear();
112 for (pos=S1T.begin(); pos<S1T.end(); pos++)
113 { delete [] *pos; }
114 S1T.clear();
115 for (pos=B1T.begin(); pos<B1T.end(); pos++)
116 { delete [] *pos; }
117 B1T.clear();
118 for (pos=S2T.begin(); pos<S2T.end(); pos++)
119 { delete [] *pos; }
120 S2T.clear();
121 for (pos=B2T.begin(); pos<B2T.end(); pos++)
122 { delete [] *pos; }
123 B2T.clear();
124 for (pos=S3T.begin(); pos<S3T.end(); pos++)
125 { delete [] *pos; }
126 S3T.clear();
127 for (pos=B3T.begin(); pos<B3T.end(); pos++)
128 { delete [] *pos; }
129 B3T.clear();
130 for (pos=S4T.begin(); pos<S4T.end(); pos++)
131 { delete [] *pos; }
132 S4T.clear();
133 for (pos=B4T.begin(); pos<B4T.end(); pos++)
134 { delete [] *pos; }
135 B4T.clear();
136}
137
139 const G4Element*,
140 const G4Material*)
141{
142 G4ParticleDefinition* particle = Pt->GetDefinition();
143 if (particle == G4Lambda::Lambda())
144 {
145 return true;
146 }
147 else if(particle == G4SigmaPlus::SigmaPlus())
148 {
149 return true;
150 }
151 else if(particle == G4SigmaMinus::SigmaMinus())
152 {
153 return true;
154 }
155 else if(particle == G4SigmaZero::SigmaZero())
156 {
157 return true;
158 }
159 else if(particle == G4XiMinus::XiMinus())
160 {
161 return true;
162 }
163 else if(particle == G4XiZero::XiZero())
164 {
165 return true;
166 }
167 else if(particle == G4OmegaMinus::OmegaMinus())
168 {
169 return true;
170 }
171 return false;
172}
173
174// The main member function giving the collision cross section (P is in IU, CS is in mb)
175// Make pMom in independent units ! (Now it is MeV)
177 const G4Isotope*,
178 const G4Element*,
179 const G4Material*)
180{
181 G4double pMom=Pt->GetTotalMomentum();
182 G4int tgN = A - tgZ;
183 G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
184
185 return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
186}
187
189{
190 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
191 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
192 static std::vector <G4double> colP; // Vector of last momenta for the reaction
193 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
194 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
195 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
196
197 G4bool fCS = false;
198 G4double pEn=pMom;
199
200 onlyCS=fCS;
201
202 G4bool in=false; // By default the isotope must be found in the AMDB
203 lastP = 0.; // New momentum history (nothing to compare with)
204 lastN = tgN; // The last N of the calculated nucleus
205 lastZ = tgZ; // The last Z of the calculated nucleus
206 lastI = colN.size(); // Size of the Associative Memory DB in the heap
207 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
208 { // The nucleus with projPDG is found in AMDB
209 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
210 {
211 lastI=i;
212 lastTH =colTH[i]; // Last THreshold (A-dependent)
213 if(pEn<=lastTH)
214 {
215 return 0.; // Energy is below the Threshold value
216 }
217 lastP =colP [i]; // Last Momentum (A-dependent)
218 lastCS =colCS[i]; // Last CrossSect (A-dependent)
219 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
220 if(lastP == pMom) // Do not recalculate
221 {
222 CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
223 return lastCS*millibarn; // Use theLastCS
224 }
225 in = true; // This is the case when the isotop is found in DB
226 // Momentum pMom is in IU ! @@ Units
227 lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
228 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
229 {
230 lastTH=pEn;
231 }
232 break; // Go out of the LOOP with found lastI
233 }
234 } // End of attampt to find the nucleus in DB
235 if(!in) // This nucleus has not been calculated previously
236 {
237 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
238 lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
239 if(lastCS<=0.)
240 {
241 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
242 if(pEn>lastTH)
243 {
244 lastTH=pEn;
245 }
246 }
247 colN.push_back(tgN);
248 colZ.push_back(tgZ);
249 colP.push_back(pMom);
250 colTH.push_back(lastTH);
251 colCS.push_back(lastCS);
252 return lastCS*millibarn;
253 } // End of creation of the new set of parameters
254 else
255 {
256 colP[lastI]=pMom;
257 colCS[lastI]=lastCS;
258 }
259 return lastCS*millibarn;
260}
261
262// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
263// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
264G4double G4ChipsHyperonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
265 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
266{
267 // *** Begin of Associative Memory DB for acceleration of the cross section calculations
268 static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
269 // *** End of Static Definitions (Associative Memory Data Base) ***
270 G4double pMom=pIU/GeV; // All calculations are in GeV
271 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
272 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
273 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
274 {
275 if(F<0) // the AMDB must be loded
276 {
277 lastPIN = PIN[I]; // Max log(P) initialised for this table set
278 lastPAR = PAR[I]; // Pointer to the parameter set
279
280 lastCST = CST[I]; // Pointer to the total sross-section table
281 lastSST = SST[I]; // Pointer to the first squared slope
282 lastS1T = S1T[I]; // Pointer to the first mantissa
283 lastB1T = B1T[I]; // Pointer to the first slope
284 lastS2T = S2T[I]; // Pointer to the second mantissa
285 lastB2T = B2T[I]; // Pointer to the second slope
286 lastS3T = S3T[I]; // Pointer to the third mantissa
287 lastB3T = B3T[I]; // Pointer to the rhird slope
288 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
289 lastB4T = B4T[I]; // Pointer to the 4-th slope
290 }
291 if(lastLP>lastPIN && lastLP<lPMax)
292 {
293 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
294 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
295 }
296 }
297 else // This isotope wasn't initialized => CREATE
298 {
299 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
300 lastPAR[nLast]=0; // Initialization for VALGRIND
301 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
302 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
303 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
304 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
305 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
306 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
307 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
308 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
309 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
310 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
311 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
312 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
313 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
314 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
315 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
316 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
317 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
318 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
319 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
320 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
321 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
322 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
323 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
324 } // End of creation/update of the new set of parameters and tables
325 // =-----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
326 if(lastLP>lastPIN && lastLP<lPMax)
327 {
328 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
329 }
330 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
331 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
332 {
333 if(lastLP==lastPIN)
334 {
335 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
336 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
337 if(blast<0 || blast>=nLast)G4cout<<"G4QHyperElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
338 lastSIG = lastCST[blast];
339 if(!onlyCS) // Skip the differential cross-section parameters
340 {
341 theSS = lastSST[blast];
342 theS1 = lastS1T[blast];
343 theB1 = lastB1T[blast];
344 theS2 = lastS2T[blast];
345 theB2 = lastB2T[blast];
346 theS3 = lastS3T[blast];
347 theB3 = lastB3T[blast];
348 theS4 = lastS4T[blast];
349 theB4 = lastB4T[blast];
350 }
351 }
352 else
353 {
354 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
355 G4int blast=static_cast<int>(shift); // the lower bin number
356 if(blast<0) blast=0;
357 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
358 shift-=blast; // step inside the unit bin
359 G4int lastL=blast+1; // the upper bin number
360 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
361 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
362 if(!onlyCS) // Skip the differential cross-section parameters
363 {
364 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
365 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
366 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
367 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
368 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
369 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
370 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
371 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
372 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
373 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
374 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
375 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
376 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
377 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
378 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
379 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
380 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
381 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
382 }
383 }
384 }
385 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
386 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
387 return lastSIG;
388}
389
390// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
391G4double G4ChipsHyperonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
392 G4int tgZ, G4int tgN)
393{
394 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
395 static const G4double pwd=2727;
396 const G4int n_hypel=33; // #of parameters for pp-elastic (<nPoints=128)
397 // -0- -1- -2- -3- -4- -5- -6--7--8--9--10--11--12-13--14-
398 G4double hyp_el[n_hypel]={1.,.002,.12,.0557,3.5,6.72,99.,2.,3.,5.,74.,3.,3.4,.2,.17,
399 .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,
400 1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
401 // -15--16- -17- -18- -19- -20- -21- -22- -23- -24- -25-
402 // -26- -27- -28- -29- -30- -31- -32-
403 if(PDG!=3222 && PDG>3000 && PDG<3335)
404 {
405 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
406 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
407 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
408 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
409 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
410 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
411 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
412 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
413 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
414 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
415 //
416 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
417 {
418 if ( tgZ == 1 && tgN == 0 )
419 {
420 for (G4int ip=0; ip<n_hypel; ip++) lastPAR[ip]=hyp_el[ip]; // Hyperon+P
421 }
422 else
423 {
424 G4double a=tgZ+tgN;
425 G4double sa=std::sqrt(a);
426 G4double ssa=std::sqrt(sa);
427 G4double asa=a*sa;
428 G4double a2=a*a;
429 G4double a3=a2*a;
430 G4double a4=a3*a;
431 G4double a5=a4*a;
432 G4double a6=a4*a2;
433 G4double a7=a6*a;
434 G4double a8=a7*a;
435 G4double a9=a8*a;
436 G4double a10=a5*a5;
437 G4double a12=a6*a6;
438 G4double a14=a7*a7;
439 G4double a16=a8*a8;
440 G4double a17=a16*a;
441 //G4double a20=a16*a4;
442 G4double a32=a16*a16;
443 // Reaction cross-section parameters (pel=peh_fit.f)
444 lastPAR[0]=4./(1.+22/asa); // p1
445 lastPAR[1]=2.36*asa/(1.+a*.055/ssa); // p2
446 lastPAR[2]=(1.+.00007*a3/ssa)/(1.+.0026*a2); // p3
447 lastPAR[3]=1.76*a/ssa+.00003*a3; // p4
448 lastPAR[4]=(.03+200./a3)/(1.+1.E5/a3/sa); // p5
449 lastPAR[5]=5.; // p6
450 lastPAR[6]=0.; // p7 not used
451 lastPAR[7]=0.; // p8 not used
452 lastPAR[8]=0.; // p9 not used
453 // @@ the differential cross-section is parameterized separately for A>6 & A<7
454 if(a<6.5)
455 {
456 G4double a28=a16*a12;
457 // The main pre-exponent (pel_sg)
458 lastPAR[ 9]=4000*a; // p1
459 lastPAR[10]=1.2e7*a8+380*a17; // p2
460 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
461 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
462 lastPAR[13]=.28*a; // p5
463 lastPAR[14]=1.2*a2+2.3; // p6
464 lastPAR[15]=3.8/a; // p7
465 // The main slope (pel_sl)
466 lastPAR[16]=.01/(1.+.0024*a5); // p1
467 lastPAR[17]=.2*a; // p2
468 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
469 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
470 // The main quadratic (pel_sh)
471 lastPAR[20]=2.25*a3; // p1
472 lastPAR[21]=18.; // p2
473 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
474 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
475 // The 1st max pre-exponent (pel_qq)
476 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
477 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
478 lastPAR[26]=.0006*a3; // p3
479 // The 1st max slope (pel_qs)
480 lastPAR[27]=10.+4.e-8*a12*a; // p1
481 lastPAR[28]=.114; // p2
482 lastPAR[29]=.003; // p3
483 lastPAR[30]=2.e-23; // p4
484 // The effective pre-exponent (pel_ss)
485 lastPAR[31]=1./(1.+.0001*a8); // p1
486 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
487 lastPAR[33]=.03; // p3
488 // The effective slope (pel_sb)
489 lastPAR[34]=a/2; // p1
490 lastPAR[35]=2.e-7*a4; // p2
491 lastPAR[36]=4.; // p3
492 lastPAR[37]=64./a3; // p4
493 // The gloria pre-exponent (pel_us)
494 lastPAR[38]=1.e8*std::exp(.32*asa); // p1
495 lastPAR[39]=20.*std::exp(.45*asa); // p2
496 lastPAR[40]=7.e3+2.4e6/a5; // p3
497 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
498 lastPAR[42]=2.5*a; // p5
499 // The gloria slope (pel_ub)
500 lastPAR[43]=920.+.03*a8*a3; // p1
501 lastPAR[44]=93.+.0023*a12; // p2
502 }
503 else
504 {
505 G4double p1a10=2.2e-28*a10;
506 G4double r4a16=6.e14/a16;
507 G4double s4a16=r4a16*r4a16;
508 // a24
509 // a36
510 // The main pre-exponent (peh_sg)
511 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
512 lastPAR[10]=.06*std::pow(a,.6); // p2
513 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
514 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
515 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
516 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
517 // The main slope (peh_sl)
518 lastPAR[15]=400./a12+2.e-22*a9; // p1
519 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
520 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
521 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
522 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
523 lastPAR[20]=9.+100./a; // p6
524 // The main quadratic (peh_sh)
525 lastPAR[21]=.002*a3+3.e7/a6; // p1
526 lastPAR[22]=7.e-15*a4*asa; // p2
527 lastPAR[23]=9000./a4; // p3
528 // The 1st max pre-exponent (peh_qq)
529 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
530 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
531 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
532 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
533 // The 1st max slope (peh_qs)
534 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
535 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
536 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
537 lastPAR[31]=100./asa; // p4
538 // The 2nd max pre-exponent (peh_ss)
539 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
540 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
541 lastPAR[34]=1.3+3.e5/a4; // p3
542 lastPAR[35]=500./(a2+50.)+3; // p4
543 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
544 // The 2nd max slope (peh_sb)
545 lastPAR[37]=.4*asa+3.e-9*a6; // p1
546 lastPAR[38]=.0005*a5; // p2
547 lastPAR[39]=.002*a5; // p3
548 lastPAR[40]=10.; // p4
549 // The effective pre-exponent (peh_us)
550 lastPAR[41]=.05+.005*a; // p1
551 lastPAR[42]=7.e-8/sa; // p2
552 lastPAR[43]=.8*sa; // p3
553 lastPAR[44]=.02*sa; // p4
554 lastPAR[45]=1.e8/a3; // p5
555 lastPAR[46]=3.e32/(a32+1.e32); // p6
556 // The effective slope (peh_ub)
557 lastPAR[47]=24.; // p1
558 lastPAR[48]=20./sa; // p2
559 lastPAR[49]=7.e3*a/(sa+1.); // p3
560 lastPAR[50]=900.*sa/(1.+500./a3); // p4
561 }
562 // Parameter for lowEnergyNeutrons
563 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
564 }
565 lastPAR[nLast]=pwd;
566 // and initialize the zero element of the table
567 G4double lp=lPMin; // ln(momentum)
568 G4bool memCS=onlyCS; // ??
569 onlyCS=false;
570 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
571 onlyCS=memCS;
572 lastSST[0]=theSS;
573 lastS1T[0]=theS1;
574 lastB1T[0]=theB1;
575 lastS2T[0]=theS2;
576 lastB2T[0]=theB2;
577 lastS3T[0]=theS3;
578 lastB3T[0]=theB3;
579 lastS4T[0]=theS4;
580 lastB4T[0]=theB4;
581 }
582 if(LP>ILP)
583 {
584 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
585 if(ini<0) ini=0;
586 if(ini<nPoints)
587 {
588 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
589 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
590 if(fin>=ini)
591 {
592 G4double lp=0.;
593 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
594 {
595 lp=lPMin+ip*dlnP; // ln(momentum)
596 G4bool memCS=onlyCS;
597 onlyCS=false;
598 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
599 onlyCS=memCS;
600 lastSST[ip]=theSS;
601 lastS1T[ip]=theS1;
602 lastB1T[ip]=theB1;
603 lastS2T[ip]=theS2;
604 lastB2T[ip]=theB2;
605 lastS3T[ip]=theS3;
606 lastB3T[ip]=theB3;
607 lastS4T[ip]=theS4;
608 lastB4T[ip]=theB4;
609 }
610 return lp;
611 }
612 else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
613 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
614 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
615 }
616 else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
617 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
618 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
619 }
620 } else {
621 // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
622 // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
623 // throw G4QException("G4ChipsHyperonElasticXS::GetPTables:onlyaBA implemented");
625 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
626 << ", while it is defined only for Hyperons" << G4endl;
627 G4Exception("G4ChipsHyperonElasticXS::GetPTables()", "HAD_CHPS_0000",
628 FatalException, ed);
629 }
630 return ILP;
631}
632
633// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
635{
636 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
637 static const G4double third=1./3.;
638 static const G4double fifth=1./5.;
639 static const G4double sevth=1./7.;
640 if(PDG==3222 || PDG<3000 || PDG>3334)G4cout<<"*Warning*G4QHyElCS::GET:PDG="<<PDG<<G4endl;
641 if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetExchanT: onlyCS=1"<<G4endl;
642 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
643 G4double q2=0.;
644 if(tgZ==1 && tgN==0) // ===> p+p=p+p
645 {
646 G4double E1=lastTM*theB1;
647 G4double R1=(1.-std::exp(-E1));
648 G4double E2=lastTM*theB2;
649 G4double R2=(1.-std::exp(-E2*E2*E2));
650 G4double E3=lastTM*theB3;
651 G4double R3=(1.-std::exp(-E3));
652 G4double I1=R1*theS1/theB1;
653 G4double I2=R2*theS2;
654 G4double I3=R3*theS3;
655 G4double I12=I1+I2;
656 G4double rand=(I12+I3)*G4UniformRand();
657 if (rand<I1 )
658 {
659 G4double ran=R1*G4UniformRand();
660 if(ran>1.) ran=1.;
661 q2=-std::log(1.-ran)/theB1;
662 }
663 else if(rand<I12)
664 {
665 G4double ran=R2*G4UniformRand();
666 if(ran>1.) ran=1.;
667 q2=-std::log(1.-ran);
668 if(q2<0.) q2=0.;
669 q2=std::pow(q2,third)/theB2;
670 }
671 else
672 {
673 G4double ran=R3*G4UniformRand();
674 if(ran>1.) ran=1.;
675 q2=-std::log(1.-ran)/theB3;
676 }
677 }
678 else
679 {
680 G4double a=tgZ+tgN;
681 G4double E1=lastTM*(theB1+lastTM*theSS);
682 G4double R1=(1.-std::exp(-E1));
683 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
684 G4double tm2=lastTM*lastTM;
685 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
686 if(a>6.5)E2*=tm2; // for heavy nuclei
687 G4double R2=(1.-std::exp(-E2));
688 G4double E3=lastTM*theB3;
689 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
690 G4double R3=(1.-std::exp(-E3));
691 G4double E4=lastTM*theB4;
692 G4double R4=(1.-std::exp(-E4));
693 G4double I1=R1*theS1;
694 G4double I2=R2*theS2;
695 G4double I3=R3*theS3;
696 G4double I4=R4*theS4;
697 G4double I12=I1+I2;
698 G4double I13=I12+I3;
699 G4double rand=(I13+I4)*G4UniformRand();
700 if(rand<I1)
701 {
702 G4double ran=R1*G4UniformRand();
703 if(ran>1.) ran=1.;
704 q2=-std::log(1.-ran)/theB1;
705 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
706 }
707 else if(rand<I12)
708 {
709 G4double ran=R2*G4UniformRand();
710 if(ran>1.) ran=1.;
711 q2=-std::log(1.-ran)/theB2;
712 if(q2<0.) q2=0.;
713 if(a<6.5) q2=std::pow(q2,third);
714 else q2=std::pow(q2,fifth);
715 }
716 else if(rand<I13)
717 {
718 G4double ran=R3*G4UniformRand();
719 if(ran>1.) ran=1.;
720 q2=-std::log(1.-ran)/theB3;
721 if(q2<0.) q2=0.;
722 if(a>6.5) q2=std::pow(q2,sevth);
723 }
724 else
725 {
726 G4double ran=R4*G4UniformRand();
727 if(ran>1.) ran=1.;
728 q2=-std::log(1.-ran)/theB4;
729 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
730 }
731 }
732 if(q2<0.) q2=0.;
733 if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QHyElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
734 if(q2>lastTM)
735 {
736 q2=lastTM;
737 }
738 return q2*GeVSQ;
739}
740
741// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
742G4double G4ChipsHyperonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
743{
744 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
745 if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetSlope: onlCS=true"<<G4endl;
746 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
747 if(PDG==3222 || PDG<3000 || PDG>3334)
748 {
749 // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
750 // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
751 // throw G4QException("G4ChipsHyperonElasticXS::GetSlope: HypA are implemented");
753 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
754 << ", while it is defined only for Hyperons" << G4endl;
755 G4Exception("G4ChipsHyperonElasticXS::GetSlope()", "HAD_CHPS_0000",
756 FatalException, ed);
757 }
758 if(theB1<0.) theB1=0.;
759 if(!(theB1>=-1.||theB1<=1.)) G4cout<<"*NAN*G4QHyElasticCrossS::Getslope:"<<theB1<<G4endl;
760 return theB1/GeVSQ;
761}
762
763// Returns half max(Q2=-t) in independent units (MeV^2)
764G4double G4ChipsHyperonElasticXS::GetHMaxT()
765{
766 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
767 return lastTM*HGeVSQ;
768}
769
770// lastLP is used, so calculating tables, one need to remember and then recover lastLP
771G4double G4ChipsHyperonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
772 G4int tgN)
773{
774 if(PDG==3222 || PDG<3000 || PDG>3334) G4cout<<"*Warning*G4QHypElCS::GTV:P="<<PDG<<G4endl;
775 if(tgZ<0 || tgZ>92)
776 {
777 G4cout<<"*Warning*G4QHyperonElastCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
778 return 0.;
779 }
780 G4int iZ=tgZ-1; // Z index
781 if(iZ<0)
782 {
783 iZ=0; // conversion of the neutron target to the proton target
784 tgZ=1;
785 tgN=0;
786 }
787 G4double p=std::exp(lp); // momentum
788 G4double sp=std::sqrt(p); // sqrt(p)
789 G4double p2=p*p;
790 G4double p3=p2*p;
791 G4double p4=p3*p;
792 if ( tgZ == 1 && tgN == 0 ) // Hyperon+P
793 {
794 G4double dl2=lp-lastPAR[9];
795 theSS=lastPAR[32];
796 theS1=(lastPAR[10]+lastPAR[11]*dl2*dl2)/(1.+lastPAR[12]/p4/p)+
797 (lastPAR[13]/p2+lastPAR[14]*p)/(p4+lastPAR[15]*sp);
798 theB1=lastPAR[16]*std::pow(p,lastPAR[17])/(1.+lastPAR[18]/p3);
799 theS2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]*p);
800 theB2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]/sp);
801 theS3=lastPAR[25]+lastPAR[26]/(p4*p4+lastPAR[27]*p2+lastPAR[28]);
802 theB3=lastPAR[29]+lastPAR[30]/(p4+lastPAR[31]);
803 theS4=0.;
804 theB4=0.;
805 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
806 G4double dp=lp-lastPAR[4];
807 return lastPAR[0]/(lastPAR[1]+p2*(lastPAR[2]+p2))+(lastPAR[3]*dp*dp+lastPAR[5]+
808 lastPAR[6]/p2)/(1.+lastPAR[7]/sp+lastPAR[8]/p4);
809 }
810 else
811 {
812 G4double p5=p4*p;
813 G4double p6=p5*p;
814 G4double p8=p6*p2;
815 G4double p10=p8*p2;
816 G4double p12=p10*p2;
817 G4double p16=p8*p8;
818 //G4double p24=p16*p8;
819 G4double dl=lp-5.;
820 G4double a=tgZ+tgN;
821 G4double pah=std::pow(p,a/2);
822 G4double pa=pah*pah;
823 G4double pa2=pa*pa;
824 if(a<6.5)
825 {
826 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
827 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
828 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
829 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
830 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
831 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
832 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
833 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
834 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
835 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
836 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
837 }
838 else
839 {
840 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
841 lastPAR[13]/(p5+lastPAR[14]/p16);
842 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
843 lastPAR[17]/(1.+lastPAR[18]/p4);
844 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
845 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
846 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
847 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
848 lastPAR[33]/(1.+lastPAR[34]/p6);
849 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
850 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
851 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
852 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
853 }
854 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
855 G4double dlp=lp-lastPAR[5]; // ax
856 // p1 p2 p3 p4 p5
857 return (lastPAR[0]*dlp*dlp+lastPAR[1])/(1.+lastPAR[2]/p)+lastPAR[3]/(p3+lastPAR[4]);
858 }
859 return 0.;
860} // End of GetTableValues
861
862// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
863G4double G4ChipsHyperonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
864 G4double pP)
865{
866 static const G4double mLamb= G4Lambda::Lambda()->GetPDGMass()*.001; // MeV to GeV
867 static const G4double mLa2= mLamb*mLamb;
868 G4double pP2=pP*pP; // squared momentum of the projectile
869 if(tgZ || tgN>-1) // --> Hyperon-A
870 {
871 G4double mt=G4ParticleTable::GetParticleTable()->FindIon(tgZ,tgZ+tgN,0,tgZ)->GetPDGMass()*.001; // Target mass in GeV
872
873 G4double dmt=mt+mt;
874 G4double mds=dmt*std::sqrt(pP2+mLa2)+mLa2+mt*mt; // Mondelstam mds (@@ other hyperons?)
875 return dmt*dmt*pP2/mds;
876 }
877 else
878 {
879 // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
880 // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
881 // throw G4QException("G4ChipsHyperonElasticXS::GetQ2max: only HyperA implemented");
883 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
884 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
885 G4Exception("G4ChipsHyperonElasticXS::GetQ2max()", "HAD_CHPS_0000",
886 FatalException, ed);
887 return 0;
888 }
889}
#define G4_DECLARE_XS_FACTORY(cross_section)
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
static G4OmegaMinus * OmegaMinus()
G4ParticleDefinition * FindIon(G4int atomicNumber, G4int atomicMass, G4double excitationEnergy)
static G4ParticleTable * GetParticleTable()
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76