Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
trees.cc
Go to the documentation of this file.
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2003 Jean-loup Gailly
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process uses several Huffman trees. The more
10 * common source values are represented by shorter bit sequences.
11 *
12 * Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values). The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
17 *
18 * REFERENCES
19 *
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22 *
23 * Storer, James A.
24 * Data Compression: Methods and Theory, pp. 49-50.
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
26 *
27 * Sedgewick, R.
28 * Algorithms, p290.
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
30 */
31
32/* @(#) $Id: trees.cc,v 1.1 2005-05-12 21:04:53 duns Exp $ */
33
34/* #define GEN_TREES_H */
35
36#include "deflate.h"
37
38#ifdef DEBUG
39# include <ctype.h>
40#endif
41
42/* ===========================================================================
43 * Constants
44 */
45
46#define MAX_BL_BITS 7
47/* Bit length codes must not exceed MAX_BL_BITS bits */
48
49#define END_BLOCK 256
50/* end of block literal code */
51
52#define REP_3_6 16
53/* repeat previous bit length 3-6 times (2 bits of repeat count) */
54
55#define REPZ_3_10 17
56/* repeat a zero length 3-10 times (3 bits of repeat count) */
57
58#define REPZ_11_138 18
59/* repeat a zero length 11-138 times (7 bits of repeat count) */
60
61local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63
64local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66
67local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72/* The lengths of the bit length codes are sent in order of decreasing
73 * probability, to avoid transmitting the lengths for unused bit length codes.
74 */
75
76#define Buf_size (8 * 2*sizeof(char))
77/* Number of bits used within bi_buf. (bi_buf might be implemented on
78 * more than 16 bits on some systems.)
79 */
80
81/* ===========================================================================
82 * Local data. These are initialized only once.
83 */
84
85#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
86
87#if defined(GEN_TREES_H) || !defined(STDC)
88/* non ANSI compilers may not accept trees.h */
89
91/* The static literal tree. Since the bit lengths are imposed, there is no
92 * need for the L_CODES extra codes used during heap construction. However
93 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
94 * below).
95 */
96
98/* The static distance tree. (Actually a trivial tree since all codes use
99 * 5 bits.)
100 */
101
103/* Distance codes. The first 256 values correspond to the distances
104 * 3 .. 258, the last 256 values correspond to the top 8 bits of
105 * the 15 bit distances.
106 */
107
109/* length code for each normalized match length (0 == MIN_MATCH) */
110
112/* First normalized length for each code (0 = MIN_MATCH) */
113
115/* First normalized distance for each code (0 = distance of 1) */
116
117#else
118# include "trees.h"
119#endif /* GEN_TREES_H */
120
121struct static_tree_desc_s {
122 const ct_data *static_tree; /* static tree or NULL */
123 const intf *extra_bits; /* extra bits for each code or NULL */
124 int extra_base; /* base index for extra_bits */
125 int elems; /* max number of elements in the tree */
126 int max_length; /* max bit length for the codes */
127};
128
131
134
136{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
137
138/* ===========================================================================
139 * Local (static) routines in this file.
140 */
141
144local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
146local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
147local void build_tree OF((deflate_state *s, tree_desc *desc));
148local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
149local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
151local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
152 int blcodes));
154 ct_data *dtree));
156local unsigned bi_reverse OF((unsigned value, int length));
158local void bi_flush OF((deflate_state *s));
159local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
160 int header));
161
162#ifdef GEN_TREES_H
163local void gen_trees_header OF((void));
164#endif
165
166#ifndef DEBUG
167# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
168 /* Send a code of the given tree. c and tree must not have side effects */
169
170#else /* DEBUG */
171# define send_code(s, c, tree) \
172 { if (z_verbose>2) fprintf(stderr,(char*)"\ncd %3d ",(c)); \
173 send_bits(s, tree[c].Code, tree[c].Len); }
174#endif
175
176/* ===========================================================================
177 * Output a short LSB first on the stream.
178 * IN assertion: there is enough room in pendingBuf.
179 */
180#define put_short(s, w) { \
181 put_byte(s, (uch)((w) & 0xff)); \
182 put_byte(s, (uch)((ush)(w) >> 8)); \
183}
184
185/* ===========================================================================
186 * Send a value on a given number of bits.
187 * IN assertion: length <= 16 and value fits in length bits.
188 */
189#ifdef DEBUG
190local void send_bits OF((deflate_state *s, int value, int length));
191
192local void send_bits(deflate_state *s, int value, int length)
193{
194 Tracevv((stderr,(char*)" l %2d v %4x ", length, value));
195 Assert(length > 0 && length <= 15, (char*)"invalid length");
196 s->bits_sent += (ulg)length;
197
198 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
199 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
200 * unused bits in value.
201 */
202 if (s->bi_valid > (int)Buf_size - length) {
203 s->bi_buf |= (value << s->bi_valid);
204 put_short(s, s->bi_buf);
205 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
206 s->bi_valid += length - Buf_size;
207 } else {
208 s->bi_buf |= value << s->bi_valid;
209 s->bi_valid += length;
210 }
211}
212#else /* !DEBUG */
213
214#define send_bits(s, value, length) \
215{ int len = length;\
216 if (s->bi_valid > (int)Buf_size - len) {\
217 int val = value;\
218 s->bi_buf |= (val << s->bi_valid);\
219 put_short(s, s->bi_buf);\
220 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
221 s->bi_valid += len - Buf_size;\
222 } else {\
223 s->bi_buf |= (value) << s->bi_valid;\
224 s->bi_valid += len;\
225 }\
226}
227#endif /* DEBUG */
228
229
230/* the arguments must not have side effects */
231
232/* ===========================================================================
233 * Initialize the various 'constant' tables.
234 */
236{
237#if defined(GEN_TREES_H) || !defined(STDC)
238 static int static_init_done = 0;
239 int n; /* iterates over tree elements */
240 int bits; /* bit counter */
241 int length; /* length value */
242 int code; /* code value */
243 int dist; /* distance index */
244 ush bl_count[MAX_BITS+1];
245 /* number of codes at each bit length for an optimal tree */
246
247 if (static_init_done) return;
248
249 /* For some embedded targets, global variables are not initialized: */
255
256 /* Initialize the mapping length (0..255) -> length code (0..28) */
257 length = 0;
258 for (code = 0; code < LENGTH_CODES-1; code++) {
259 base_length[code] = length;
260 for (n = 0; n < (1<<extra_lbits[code]); n++) {
261 _length_code[length++] = (uch)code;
262 }
263 }
264 Assert (length == 256, (char*)"tr_static_init: length != 256");
265 /* Note that the length 255 (match length 258) can be represented
266 * in two different ways: code 284 + 5 bits or code 285, so we
267 * overwrite length_code[255] to use the best encoding:
268 */
269 _length_code[length-1] = (uch)code;
270
271 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
272 dist = 0;
273 for (code = 0 ; code < 16; code++) {
274 base_dist[code] = dist;
275 for (n = 0; n < (1<<extra_dbits[code]); n++) {
276 _dist_code[dist++] = (uch)code;
277 }
278 }
279 Assert (dist == 256, (char*)"tr_static_init: dist != 256");
280 dist >>= 7; /* from now on, all distances are divided by 128 */
281 for ( ; code < D_CODES; code++) {
282 base_dist[code] = dist << 7;
283 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
284 _dist_code[256 + dist++] = (uch)code;
285 }
286 }
287 Assert (dist == 256, (char*)"tr_static_init: 256+dist != 512");
288
289 /* Construct the codes of the static literal tree */
290 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
291 n = 0;
292 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
293 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
294 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
295 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
296 /* Codes 286 and 287 do not exist, but we must include them in the
297 * tree construction to get a canonical Huffman tree (longest code
298 * all ones)
299 */
300 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
301
302 /* The static distance tree is trivial: */
303 for (n = 0; n < D_CODES; n++) {
304 static_dtree[n].Len = 5;
305 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
306 }
307 static_init_done = 1;
308
309# ifdef GEN_TREES_H
310 gen_trees_header();
311# endif
312#endif /* defined(GEN_TREES_H) || !defined(STDC) */
313}
314
315/* ===========================================================================
316 * Genererate the file trees.h describing the static trees.
317 */
318#ifdef GEN_TREES_H
319# ifndef DEBUG
320# include <stdio.h>
321# endif
322
323# define SEPARATOR(i, last, width) \
324 ((i) == (last)? (char*)"\n};\n\n" : \
325 ((i) % (width) == (width)-1 ? (char*)",\n" : ", "))
326
327void gen_trees_header()
328{
329 FILE *header = fopen((char*)"trees.h", (char*)"w");
330 int i;
331
332 Assert (header != NULL, (char*)"Can't open trees.h");
333 fprintf(header,
334 (char*)"/* header created automatically with -DGEN_TREES_H */\n\n");
335
336 fprintf(header, (char*)"local const ct_data static_ltree[L_CODES+2] = {\n");
337 for (i = 0; i < L_CODES+2; i++) {
338 fprintf(header, (char*)"{{%3u},{%3u}}%s", static_ltree[i].Code,
339 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
340 }
341
342 fprintf(header, (char*)"local const ct_data static_dtree[D_CODES] = {\n");
343 for (i = 0; i < D_CODES; i++) {
344 fprintf(header, (char*)"{{%2u},{%2u}}%s", static_dtree[i].Code,
345 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
346 }
347
348 fprintf(header, (char*)"const uch _dist_code[DIST_CODE_LEN] = {\n");
349 for (i = 0; i < DIST_CODE_LEN; i++) {
350 fprintf(header, (char*)"%2u%s", _dist_code[i],
351 SEPARATOR(i, DIST_CODE_LEN-1, 20));
352 }
353
354 fprintf(header, (char*)"const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
355 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
356 fprintf(header, (char*)"%2u%s", _length_code[i],
357 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
358 }
359
360 fprintf(header, (char*)"local const int base_length[LENGTH_CODES] = {\n");
361 for (i = 0; i < LENGTH_CODES; i++) {
362 fprintf(header, (char*)"%1u%s", base_length[i],
363 SEPARATOR(i, LENGTH_CODES-1, 20));
364 }
365
366 fprintf(header, (char*)"local const int base_dist[D_CODES] = {\n");
367 for (i = 0; i < D_CODES; i++) {
368 fprintf(header, (char*)"%5u%s", base_dist[i],
369 SEPARATOR(i, D_CODES-1, 10));
370 }
371
372 fclose(header);
373}
374#endif /* GEN_TREES_H */
375
376/* ===========================================================================
377 * Initialize the tree data structures for a new zlib stream.
378 */
380{
382
383 s->l_desc.dyn_tree = s->dyn_ltree;
385
386 s->d_desc.dyn_tree = s->dyn_dtree;
388
389 s->bl_desc.dyn_tree = s->bl_tree;
391
392 s->bi_buf = 0;
393 s->bi_valid = 0;
394 s->last_eob_len = 8; /* enough lookahead for inflate */
395#ifdef DEBUG
396 s->compressed_len = 0L;
397 s->bits_sent = 0L;
398#endif
399
400 /* Initialize the first block of the first file: */
401 init_block(s);
402}
403
404/* ===========================================================================
405 * Initialize a new block.
406 */
408{
409 int n; /* iterates over tree elements */
410
411 /* Initialize the trees. */
412 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
413 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
414 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
415
416 s->dyn_ltree[END_BLOCK].Freq = 1;
417 s->opt_len = s->static_len = 0L;
418 s->last_lit = s->matches = 0;
419}
420
421#define SMALLEST 1
422/* Index within the heap array of least frequent node in the Huffman tree */
423
424
425/* ===========================================================================
426 * Remove the smallest element from the heap and recreate the heap with
427 * one less element. Updates heap and heap_len.
428 */
429#define pqremove(s, tree, top) \
430{\
431 top = s->heap[SMALLEST]; \
432 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
433 pqdownheap(s, tree, SMALLEST); \
434}
435
436/* ===========================================================================
437 * Compares to subtrees, using the tree depth as tie breaker when
438 * the subtrees have equal frequency. This minimizes the worst case length.
439 */
440#define smaller(tree, n, m, depth) \
441 (tree[n].Freq < tree[m].Freq || \
442 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
443
444/* ===========================================================================
445 * Restore the heap property by moving down the tree starting at node k,
446 * exchanging a node with the smallest of its two sons if necessary, stopping
447 * when the heap property is re-established (each father smaller than its
448 * two sons).
449 */
450local void pqdownheap(deflate_state *s, ct_data *tree, int k)
451{
452 int v = s->heap[k];
453 int j = k << 1; /* left son of k */
454 while (j <= s->heap_len) {
455 /* Set j to the smallest of the two sons: */
456 if (j < s->heap_len &&
457 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
458 j++;
459 }
460 /* Exit if v is smaller than both sons */
461 if (smaller(tree, v, s->heap[j], s->depth)) break;
462
463 /* Exchange v with the smallest son */
464 s->heap[k] = s->heap[j]; k = j;
465
466 /* And continue down the tree, setting j to the left son of k */
467 j <<= 1;
468 }
469 s->heap[k] = v;
470}
471
472/* ===========================================================================
473 * Compute the optimal bit lengths for a tree and update the total bit length
474 * for the current block.
475 * IN assertion: the fields freq and dad are set, heap[heap_max] and
476 * above are the tree nodes sorted by increasing frequency.
477 * OUT assertions: the field len is set to the optimal bit length, the
478 * array bl_count contains the frequencies for each bit length.
479 * The length opt_len is updated; static_len is also updated if stree is
480 * not null.
481 */
483{
484 ct_data *tree = desc->dyn_tree;
485 int max_code = desc->max_code;
486 const ct_data *stree = desc->stat_desc->static_tree;
487 const intf *extra = desc->stat_desc->extra_bits;
488 int base = desc->stat_desc->extra_base;
489 int max_length = desc->stat_desc->max_length;
490 int h; /* heap index */
491 int n, m; /* iterate over the tree elements */
492 int bits; /* bit length */
493 int xbits; /* extra bits */
494 ush f; /* frequency */
495 int overflow = 0; /* number of elements with bit length too large */
496
497 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
498
499 /* In a first pass, compute the optimal bit lengths (which may
500 * overflow in the case of the bit length tree).
501 */
502 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
503
504 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
505 n = s->heap[h];
506 bits = tree[tree[n].Dad].Len + 1;
507 if (bits > max_length) bits = max_length, overflow++;
508 tree[n].Len = (ush)bits;
509 /* We overwrite tree[n].Dad which is no longer needed */
510
511 if (n > max_code) continue; /* not a leaf node */
512
513 s->bl_count[bits]++;
514 xbits = 0;
515 if (n >= base) xbits = extra[n-base];
516 f = tree[n].Freq;
517 s->opt_len += (ulg)f * (bits + xbits);
518 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
519 }
520 if (overflow == 0) return;
521
522 Trace((stderr,(char*)"\nbit length overflow\n"));
523 /* This happens for example on obj2 and pic of the Calgary corpus */
524
525 /* Find the first bit length which could increase: */
526 do {
527 bits = max_length-1;
528 while (s->bl_count[bits] == 0) bits--;
529 s->bl_count[bits]--; /* move one leaf down the tree */
530 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
531 s->bl_count[max_length]--;
532 /* The brother of the overflow item also moves one step up,
533 * but this does not affect bl_count[max_length]
534 */
535 overflow -= 2;
536 } while (overflow > 0);
537
538 /* Now recompute all bit lengths, scanning in increasing frequency.
539 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
540 * lengths instead of fixing only the wrong ones. This idea is taken
541 * from 'ar' written by Haruhiko Okumura.)
542 */
543 for (bits = max_length; bits != 0; bits--) {
544 n = s->bl_count[bits];
545 while (n != 0) {
546 m = s->heap[--h];
547 if (m > max_code) continue;
548 if (tree[m].Len != (unsigned) bits) {
549 Trace((stderr,(char*)"code %d bits %d->%d\n", m, tree[m].Len, bits));
550 s->opt_len += ((long)bits - (long)tree[m].Len)
551 *(long)tree[m].Freq;
552 tree[m].Len = (ush)bits;
553 }
554 n--;
555 }
556 }
557}
558
559/* ===========================================================================
560 * Generate the codes for a given tree and bit counts (which need not be
561 * optimal).
562 * IN assertion: the array bl_count contains the bit length statistics for
563 * the given tree and the field len is set for all tree elements.
564 * OUT assertion: the field code is set for all tree elements of non
565 * zero code length.
566 */
567local void gen_codes (ct_data *tree, int max_code, ushf *bl_count)
568{
569 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
570 ush code = 0; /* running code value */
571 int bits; /* bit index */
572 int n; /* code index */
573
574 /* The distribution counts are first used to generate the code values
575 * without bit reversal.
576 */
577 for (bits = 1; bits <= MAX_BITS; bits++) {
578 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
579 }
580 /* Check that the bit counts in bl_count are consistent. The last code
581 * must be all ones.
582 */
583 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
584 (char*)"inconsistent bit counts");
585 Tracev((stderr,(char*)"\ngen_codes: max_code %d ", max_code));
586
587 for (n = 0; n <= max_code; n++) {
588 int len = tree[n].Len;
589 if (len == 0) continue;
590 /* Now reverse the bits */
591 tree[n].Code = bi_reverse(next_code[len]++, len);
592
593 Tracecv(tree != static_ltree, (stderr,(char*)"\nn %3d %c l %2d c %4x (%x) ",
594 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
595 }
596}
597
598/* ===========================================================================
599 * Construct one Huffman tree and assigns the code bit strings and lengths.
600 * Update the total bit length for the current block.
601 * IN assertion: the field freq is set for all tree elements.
602 * OUT assertions: the fields len and code are set to the optimal bit length
603 * and corresponding code. The length opt_len is updated; static_len is
604 * also updated if stree is not null. The field max_code is set.
605 */
607{
608 ct_data *tree = desc->dyn_tree;
609 const ct_data *stree = desc->stat_desc->static_tree;
610 int elems = desc->stat_desc->elems;
611 int n, m; /* iterate over heap elements */
612 int max_code = -1; /* largest code with non zero frequency */
613 int node; /* new node being created */
614
615 /* Construct the initial heap, with least frequent element in
616 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
617 * heap[0] is not used.
618 */
619 s->heap_len = 0, s->heap_max = HEAP_SIZE;
620
621 for (n = 0; n < elems; n++) {
622 if (tree[n].Freq != 0) {
623 s->heap[++(s->heap_len)] = max_code = n;
624 s->depth[n] = 0;
625 } else {
626 tree[n].Len = 0;
627 }
628 }
629
630 /* The pkzip format requires that at least one distance code exists,
631 * and that at least one bit should be sent even if there is only one
632 * possible code. So to avoid special checks later on we force at least
633 * two codes of non zero frequency.
634 */
635 while (s->heap_len < 2) {
636 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
637 tree[node].Freq = 1;
638 s->depth[node] = 0;
639 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
640 /* node is 0 or 1 so it does not have extra bits */
641 }
642 desc->max_code = max_code;
643
644 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
645 * establish sub-heaps of increasing lengths:
646 */
647 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
648
649 /* Construct the Huffman tree by repeatedly combining the least two
650 * frequent nodes.
651 */
652 node = elems; /* next internal node of the tree */
653 do {
654 pqremove(s, tree, n); /* n = node of least frequency */
655 m = s->heap[SMALLEST]; /* m = node of next least frequency */
656
657 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
658 s->heap[--(s->heap_max)] = m;
659
660 /* Create a new node father of n and m */
661 tree[node].Freq = tree[n].Freq + tree[m].Freq;
662 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
663 s->depth[n] : s->depth[m]) + 1);
664 tree[n].Dad = tree[m].Dad = (ush)node;
665#ifdef DUMP_BL_TREE
666 if (tree == s->bl_tree) {
667 fprintf(stderr,(char*)"\nnode %d(%d), sons %d(%d) %d(%d)",
668 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
669 }
670#endif
671 /* and insert the new node in the heap */
672 s->heap[SMALLEST] = node++;
673 pqdownheap(s, tree, SMALLEST);
674
675 } while (s->heap_len >= 2);
676
677 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
678
679 /* At this point, the fields freq and dad are set. We can now
680 * generate the bit lengths.
681 */
682 gen_bitlen(s, (tree_desc *)desc);
683
684 /* The field len is now set, we can generate the bit codes */
685 gen_codes ((ct_data *)tree, max_code, s->bl_count);
686}
687
688/* ===========================================================================
689 * Scan a literal or distance tree to determine the frequencies of the codes
690 * in the bit length tree.
691 */
692local void scan_tree (deflate_state *s, ct_data *tree, int max_code)
693{
694 int n; /* iterates over all tree elements */
695 int prevlen = -1; /* last emitted length */
696 int curlen; /* length of current code */
697 int nextlen = tree[0].Len; /* length of next code */
698 int count = 0; /* repeat count of the current code */
699 int max_count = 7; /* max repeat count */
700 int min_count = 4; /* min repeat count */
701
702 if (nextlen == 0) max_count = 138, min_count = 3;
703 tree[max_code+1].Len = (ush)0xffff; /* guard */
704
705 for (n = 0; n <= max_code; n++) {
706 curlen = nextlen; nextlen = tree[n+1].Len;
707 if (++count < max_count && curlen == nextlen) {
708 continue;
709 } else if (count < min_count) {
710 s->bl_tree[curlen].Freq += count;
711 } else if (curlen != 0) {
712 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
713 s->bl_tree[REP_3_6].Freq++;
714 } else if (count <= 10) {
715 s->bl_tree[REPZ_3_10].Freq++;
716 } else {
717 s->bl_tree[REPZ_11_138].Freq++;
718 }
719 count = 0; prevlen = curlen;
720 if (nextlen == 0) {
721 max_count = 138, min_count = 3;
722 } else if (curlen == nextlen) {
723 max_count = 6, min_count = 3;
724 } else {
725 max_count = 7, min_count = 4;
726 }
727 }
728}
729
730/* ===========================================================================
731 * Send a literal or distance tree in compressed form, using the codes in
732 * bl_tree.
733 */
734local void send_tree (deflate_state *s, ct_data *tree, int max_code)
735{
736 int n; /* iterates over all tree elements */
737 int prevlen = -1; /* last emitted length */
738 int curlen; /* length of current code */
739 int nextlen = tree[0].Len; /* length of next code */
740 int count = 0; /* repeat count of the current code */
741 int max_count = 7; /* max repeat count */
742 int min_count = 4; /* min repeat count */
743
744 /* tree[max_code+1].Len = -1; */ /* guard already set */
745 if (nextlen == 0) max_count = 138, min_count = 3;
746
747 for (n = 0; n <= max_code; n++) {
748 curlen = nextlen; nextlen = tree[n+1].Len;
749 if (++count < max_count && curlen == nextlen) {
750 continue;
751 } else if (count < min_count) {
752 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
753
754 } else if (curlen != 0) {
755 if (curlen != prevlen) {
756 send_code(s, curlen, s->bl_tree); count--;
757 }
758 Assert(count >= 3 && count <= 6, (char*)" 3_6?");
759 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
760
761 } else if (count <= 10) {
762 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
763
764 } else {
765 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
766 }
767 count = 0; prevlen = curlen;
768 if (nextlen == 0) {
769 max_count = 138, min_count = 3;
770 } else if (curlen == nextlen) {
771 max_count = 6, min_count = 3;
772 } else {
773 max_count = 7, min_count = 4;
774 }
775 }
776}
777
778/* ===========================================================================
779 * Construct the Huffman tree for the bit lengths and return the index in
780 * bl_order of the last bit length code to send.
781 */
783{
784 int max_blindex; /* index of last bit length code of non zero freq */
785
786 /* Determine the bit length frequencies for literal and distance trees */
789
790 /* Build the bit length tree: */
791 build_tree(s, (tree_desc *)(&(s->bl_desc)));
792 /* opt_len now includes the length of the tree representations, except
793 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
794 */
795
796 /* Determine the number of bit length codes to send. The pkzip format
797 * requires that at least 4 bit length codes be sent. (appnote.txt says
798 * 3 but the actual value used is 4.)
799 */
800 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
801 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
802 }
803 /* Update opt_len to include the bit length tree and counts */
804 s->opt_len += 3*(max_blindex+1) + 5+5+4;
805 Tracev((stderr, (char*)"\ndyn trees: dyn %ld, stat %ld",
806 s->opt_len, s->static_len));
807
808 return max_blindex;
809}
810
811/* ===========================================================================
812 * Send the header for a block using dynamic Huffman trees: the counts, the
813 * lengths of the bit length codes, the literal tree and the distance tree.
814 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
815 */
816local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
817{
818 int rank; /* index in bl_order */
819
820 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, (char*)"not enough codes");
821 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
822 (char*)"too many codes");
823 Tracev((stderr, (char*)"\nbl counts: "));
824 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
825 send_bits(s, dcodes-1, 5);
826 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
827 for (rank = 0; rank < blcodes; rank++) {
828 Tracev((stderr, (char*)"\nbl code %2d ", bl_order[rank]));
829 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
830 }
831 Tracev((stderr, (char*)"\nbl tree: sent %ld", s->bits_sent));
832
833 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
834 Tracev((stderr, (char*)"\nlit tree: sent %ld", s->bits_sent));
835
836 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
837 Tracev((stderr, (char*)"\ndist tree: sent %ld", s->bits_sent));
838}
839
840/* ===========================================================================
841 * Send a stored block
842 */
843void _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
844{
845 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
846#ifdef DEBUG
847 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
848 s->compressed_len += (stored_len + 4) << 3;
849#endif
850 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
851}
852
853/* ===========================================================================
854 * Send one empty static block to give enough lookahead for inflate.
855 * This takes 10 bits, of which 7 may remain in the bit buffer.
856 * The current inflate code requires 9 bits of lookahead. If the
857 * last two codes for the previous block (real code plus EOB) were coded
858 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
859 * the last real code. In this case we send two empty static blocks instead
860 * of one. (There are no problems if the previous block is stored or fixed.)
861 * To simplify the code, we assume the worst case of last real code encoded
862 * on one bit only.
863 */
865{
866 send_bits(s, STATIC_TREES<<1, 3);
868#ifdef DEBUG
869 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
870#endif
871 bi_flush(s);
872 /* Of the 10 bits for the empty block, we have already sent
873 * (10 - bi_valid) bits. The lookahead for the last real code (before
874 * the EOB of the previous block) was thus at least one plus the length
875 * of the EOB plus what we have just sent of the empty static block.
876 */
877 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
878 send_bits(s, STATIC_TREES<<1, 3);
880#ifdef DEBUG
881 s->compressed_len += 10L;
882#endif
883 bi_flush(s);
884 }
885 s->last_eob_len = 7;
886}
887
888/* ===========================================================================
889 * Determine the best encoding for the current block: dynamic trees, static
890 * trees or store, and output the encoded block to the zip file.
891 */
892void _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
893{
894 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
895 int max_blindex = 0; /* index of last bit length code of non zero freq */
896
897 /* Build the Huffman trees unless a stored block is forced */
898 if (s->level > 0) {
899
900 /* Check if the file is ascii or binary */
901 if (s->strm->data_type == Z_UNKNOWN) set_data_type(s);
902
903 /* Construct the literal and distance trees */
904 build_tree(s, (tree_desc *)(&(s->l_desc)));
905 Tracev((stderr, (char*)"\nlit data: dyn %ld, stat %ld", s->opt_len,
906 s->static_len));
907
908 build_tree(s, (tree_desc *)(&(s->d_desc)));
909 Tracev((stderr, (char*)"\ndist data: dyn %ld, stat %ld", s->opt_len,
910 s->static_len));
911 /* At this point, opt_len and static_len are the total bit lengths of
912 * the compressed block data, excluding the tree representations.
913 */
914
915 /* Build the bit length tree for the above two trees, and get the index
916 * in bl_order of the last bit length code to send.
917 */
918 max_blindex = build_bl_tree(s);
919
920 /* Determine the best encoding. Compute the block lengths in bytes. */
921 opt_lenb = (s->opt_len+3+7)>>3;
922 static_lenb = (s->static_len+3+7)>>3;
923
924 Tracev((stderr, (char*)"\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
925 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
926 s->last_lit));
927
928 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
929
930 } else {
931 Assert(buf != (char*)0, (char*)"lost buf");
932 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
933 }
934
935#ifdef FORCE_STORED
936 if (buf != (char*)0) { /* force stored block */
937#else
938 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
939 /* 4: two words for the lengths */
940#endif
941 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
942 * Otherwise we can't have processed more than WSIZE input bytes since
943 * the last block flush, because compression would have been
944 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
945 * transform a block into a stored block.
946 */
947 _tr_stored_block(s, buf, stored_len, eof);
948
949#ifdef FORCE_STATIC
950 } else if (static_lenb >= 0) { /* force static trees */
951#else
952 } else if (static_lenb == opt_lenb) {
953#endif
954 send_bits(s, (STATIC_TREES<<1)+eof, 3);
956#ifdef DEBUG
957 s->compressed_len += 3 + s->static_len;
958#endif
959 } else {
960 send_bits(s, (DYN_TREES<<1)+eof, 3);
962 max_blindex+1);
964#ifdef DEBUG
965 s->compressed_len += 3 + s->opt_len;
966#endif
967 }
968 Assert (s->compressed_len == s->bits_sent, (char*)"bad compressed size");
969 /* The above check is made mod 2^32, for files larger than 512 MB
970 * and uLong implemented on 32 bits.
971 */
972 init_block(s);
973
974 if (eof) {
975 bi_windup(s);
976#ifdef DEBUG
977 s->compressed_len += 7; /* align on byte boundary */
978#endif
979 }
980 Tracev((stderr,(char*)"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
981 s->compressed_len-7*eof));
982}
983
984/* ===========================================================================
985 * Save the match info and tally the frequency counts. Return true if
986 * the current block must be flushed.
987 */
988int _tr_tally (deflate_state *s, unsigned dist, unsigned lc)
989{
990 s->d_buf[s->last_lit] = (ush)dist;
991 s->l_buf[s->last_lit++] = (uch)lc;
992 if (dist == 0) {
993 /* lc is the unmatched char */
994 s->dyn_ltree[lc].Freq++;
995 } else {
996 s->matches++;
997 /* Here, lc is the match length - MIN_MATCH */
998 dist--; /* dist = match distance - 1 */
999 Assert((ush)dist < (ush)MAX_DIST(s) &&
1000 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1001 (ush)d_code(dist) < (ush)D_CODES, (char*)"_tr_tally: bad match");
1002
1003 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1004 s->dyn_dtree[d_code(dist)].Freq++;
1005 }
1006
1007#ifdef TRUNCATE_BLOCK
1008 /* Try to guess if it is profitable to stop the current block here */
1009 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1010 /* Compute an upper bound for the compressed length */
1011 ulg out_length = (ulg)s->last_lit*8L;
1012 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1013 int dcode;
1014 for (dcode = 0; dcode < D_CODES; dcode++) {
1015 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1016 (5L+extra_dbits[dcode]);
1017 }
1018 out_length >>= 3;
1019 Tracev((stderr,(char*)"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1020 s->last_lit, in_length, out_length,
1021 100L - out_length*100L/in_length));
1022 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1023 }
1024#endif
1025 return (s->last_lit == s->lit_bufsize-1);
1026 /* We avoid equality with lit_bufsize because of wraparound at 64K
1027 * on 16 bit machines and because stored blocks are restricted to
1028 * 64K-1 bytes.
1029 */
1030}
1031
1032/* ===========================================================================
1033 * Send the block data compressed using the given Huffman trees
1034 */
1036{
1037 unsigned dist; /* distance of matched string */
1038 int lc; /* match length or unmatched char (if dist == 0) */
1039 unsigned lx = 0; /* running index in l_buf */
1040 unsigned code; /* the code to send */
1041 int extra; /* number of extra bits to send */
1042
1043 if (s->last_lit != 0) do {
1044 dist = s->d_buf[lx];
1045 lc = s->l_buf[lx++];
1046 if (dist == 0) {
1047 send_code(s, lc, ltree); /* send a literal byte */
1048 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1049 } else {
1050 /* Here, lc is the match length - MIN_MATCH */
1051 code = _length_code[lc];
1052 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1053 extra = extra_lbits[code];
1054 if (extra != 0) {
1055 lc -= base_length[code];
1056 send_bits(s, lc, extra); /* send the extra length bits */
1057 }
1058 dist--; /* dist is now the match distance - 1 */
1059 code = d_code(dist);
1060 Assert (code < D_CODES, (char*)"bad d_code");
1061
1062 send_code(s, code, dtree); /* send the distance code */
1063 extra = extra_dbits[code];
1064 if (extra != 0) {
1065 dist -= base_dist[code];
1066 send_bits(s, dist, extra); /* send the extra distance bits */
1067 }
1068 } /* literal or match pair ? */
1069
1070 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1071 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1072 (char*)"pendingBuf overflow");
1073
1074 } while (lx < s->last_lit);
1075
1076 send_code(s, END_BLOCK, ltree);
1077 s->last_eob_len = ltree[END_BLOCK].Len;
1078}
1079
1080/* ===========================================================================
1081 * Set the data type to ASCII or BINARY, using a crude approximation:
1082 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1083 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1084 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1085 */
1087{
1088 int n = 0;
1089 unsigned ascii_freq = 0;
1090 unsigned bin_freq = 0;
1091 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
1092 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
1093 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1094 s->strm->data_type = bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII;
1095}
1096
1097/* ===========================================================================
1098 * Reverse the first len bits of a code, using straightforward code (a faster
1099 * method would use a table)
1100 * IN assertion: 1 <= len <= 15
1101 */
1102local unsigned bi_reverse(unsigned code, int len)
1103{
1104 register unsigned res = 0;
1105 do {
1106 res |= code & 1;
1107 code >>= 1, res <<= 1;
1108 } while (--len > 0);
1109 return res >> 1;
1110}
1111
1112/* ===========================================================================
1113 * Flush the bit buffer, keeping at most 7 bits in it.
1114 */
1116{
1117 if (s->bi_valid == 16) {
1118 put_short(s, s->bi_buf);
1119 s->bi_buf = 0;
1120 s->bi_valid = 0;
1121 } else if (s->bi_valid >= 8) {
1122 put_byte(s, (Byte)s->bi_buf);
1123 s->bi_buf >>= 8;
1124 s->bi_valid -= 8;
1125 }
1126}
1127
1128/* ===========================================================================
1129 * Flush the bit buffer and align the output on a byte boundary
1130 */
1132{
1133 if (s->bi_valid > 8) {
1134 put_short(s, s->bi_buf);
1135 } else if (s->bi_valid > 0) {
1136 put_byte(s, (Byte)s->bi_buf);
1137 }
1138 s->bi_buf = 0;
1139 s->bi_valid = 0;
1140#ifdef DEBUG
1141 s->bits_sent = (s->bits_sent+7) & ~7;
1142#endif
1143}
1144
1145/* ===========================================================================
1146 * Copy a stored block, storing first the length and its
1147 * one's complement if requested.
1148 */
1149local void copy_block(deflate_state *s, charf *buf, unsigned len, int header)
1150{
1151 bi_windup(s); /* align on byte boundary */
1152 s->last_eob_len = 8; /* enough lookahead for inflate */
1153
1154 if (header) {
1155 put_short(s, (ush)len);
1156 put_short(s, (ush)~len);
1157#ifdef DEBUG
1158 s->bits_sent += 2*16;
1159#endif
1160 }
1161#ifdef DEBUG
1162 s->bits_sent += (ulg)len<<3;
1163#endif
1164 while (len--) {
1165 put_byte(s, *buf++);
1166 }
1167}
#define Code
Definition: deflate.h:70
#define HEAP_SIZE
Definition: deflate.h:45
#define MAX_DIST(s)
Definition: deflate.h:270
#define L_CODES
Definition: deflate.h:36
#define LITERALS
Definition: deflate.h:33
#define Len
Definition: deflate.h:72
#define MAX_BITS
Definition: deflate.h:48
#define d_code(dist)
Definition: deflate.h:284
#define put_byte(s, c)
Definition: deflate.h:262
#define D_CODES
Definition: deflate.h:39
#define Freq
Definition: deflate.h:69
#define LENGTH_CODES
Definition: deflate.h:30
#define BL_CODES
Definition: deflate.h:42
uInt last_lit
Definition: deflate.h:230
struct tree_desc_s l_desc
Definition: deflate.h:190
uInt lit_bufsize
Definition: deflate.h:210
struct ct_data_s dyn_dtree[2 *D_CODES+1]
Definition: deflate.h:187
long block_start
Definition: deflate.h:142
uchf * l_buf
Definition: deflate.h:208
ulg static_len
Definition: deflate.h:239
uch depth[2 *L_CODES+1]
Definition: deflate.h:204
uInt strstart
Definition: deflate.h:150
struct ct_data_s bl_tree[2 *BL_CODES+1]
Definition: deflate.h:188
struct tree_desc_s bl_desc
Definition: deflate.h:192
z_streamp strm
Definition: deflate.h:91
struct tree_desc_s d_desc
Definition: deflate.h:191
int last_eob_len
Definition: deflate.h:241
ush bl_count[MAX_BITS+1]
Definition: deflate.h:194
uInt matches
Definition: deflate.h:240
ushf * d_buf
Definition: deflate.h:232
int heap[2 *L_CODES+1]
Definition: deflate.h:197
struct ct_data_s dyn_ltree[HEAP_SIZE]
Definition: deflate.h:186
const intf * extra_bits
Definition: trees.cc:123
const ct_data * static_tree
Definition: trees.cc:122
int max_code
Definition: deflate.h:78
ct_data * dyn_tree
Definition: deflate.h:77
static_tree_desc * stat_desc
Definition: deflate.h:79
void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
Definition: trees.cc:816
void build_tree(deflate_state *s, tree_desc *desc)
Definition: trees.cc:606
#define Buf_size
Definition: trees.cc:76
void tr_static_init()
Definition: trees.cc:235
void init_block(deflate_state *s)
Definition: trees.cc:407
void bi_flush(deflate_state *s)
Definition: trees.cc:1115
#define END_BLOCK
Definition: trees.cc:49
const int extra_blbits[BL_CODES]
Definition: trees.cc:68
int _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
Definition: trees.cc:988
void _tr_init(deflate_state *s)
Definition: trees.cc:379
#define REPZ_11_138
Definition: trees.cc:58
#define DIST_CODE_LEN
Definition: trees.cc:85
#define REPZ_3_10
Definition: trees.cc:55
int base_dist[D_CODES]
Definition: trees.cc:114
#define send_code(s, c, tree)
Definition: trees.cc:167
ct_data static_dtree[D_CODES]
Definition: trees.cc:97
void _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
Definition: trees.cc:892
unsigned bi_reverse(unsigned code, int len)
Definition: trees.cc:1102
#define REP_3_6
Definition: trees.cc:52
const int extra_lbits[LENGTH_CODES]
Definition: trees.cc:62
const int extra_dbits[D_CODES]
Definition: trees.cc:65
void _tr_align(deflate_state *s)
Definition: trees.cc:864
void send_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.cc:734
ct_data static_ltree[L_CODES+2]
Definition: trees.cc:90
#define smaller(tree, n, m, depth)
Definition: trees.cc:440
const uch bl_order[BL_CODES]
Definition: trees.cc:71
static_tree_desc static_d_desc
Definition: trees.cc:132
#define MAX_BL_BITS
Definition: trees.cc:46
int base_length[LENGTH_CODES]
Definition: trees.cc:111
void copy_block(deflate_state *s, charf *buf, unsigned len, int header)
Definition: trees.cc:1149
uch _length_code[MAX_MATCH-MIN_MATCH+1]
Definition: trees.cc:108
void _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
Definition: trees.cc:843
uch _dist_code[DIST_CODE_LEN]
Definition: trees.cc:102
void compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
Definition: trees.cc:1035
void bi_windup(deflate_state *s)
Definition: trees.cc:1131
void scan_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.cc:692
#define pqremove(s, tree, top)
Definition: trees.cc:429
static_tree_desc static_l_desc
Definition: trees.cc:129
void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
Definition: trees.cc:567
void gen_bitlen(deflate_state *s, tree_desc *desc)
Definition: trees.cc:482
#define SMALLEST
Definition: trees.cc:421
void pqdownheap(deflate_state *s, ct_data *tree, int k)
Definition: trees.cc:450
static_tree_desc static_bl_desc
Definition: trees.cc:135
#define put_short(s, w)
Definition: trees.cc:180
void set_data_type(deflate_state *s)
Definition: trees.cc:1086
#define send_bits(s, value, length)
Definition: trees.cc:214
int build_bl_tree(deflate_state *s)
Definition: trees.cc:782
char FAR charf
Definition: zconf.h:266
unsigned int uInt
Definition: zconf.h:257
#define OF(args)
Definition: zconf.h:164
int FAR intf
Definition: zconf.h:267
unsigned char Byte
Definition: zconf.h:255
#define Z_BINARY
Definition: zlib.h:172
#define Z_UNKNOWN
Definition: zlib.h:174
#define Z_ASCII
Definition: zlib.h:173
#define local
Definition: zutil.h:31
#define STATIC_TREES
Definition: zutil.h:65
unsigned short ush
Definition: zutil.h:37
#define DYN_TREES
Definition: zutil.h:66
#define Tracecv(c, x)
Definition: zutil.h:251
#define Assert(cond, msg)
Definition: zutil.h:246
#define Tracev(x)
Definition: zutil.h:248
#define MIN_MATCH
Definition: zutil.h:69
#define Trace(x)
Definition: zutil.h:247
#define STORED_BLOCK
Definition: zutil.h:64
#define MAX_MATCH
Definition: zutil.h:70
ush FAR ushf
Definition: zutil.h:38
unsigned long ulg
Definition: zutil.h:39
#define Tracevv(x)
Definition: zutil.h:249
unsigned char uch
Definition: zutil.h:35