Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGKPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29
32#include "G4SystemOfUnits.hh"
33#include "Randomize.hh"
34
37 G4Nucleus &targetNucleus )
38{
39 const G4HadProjectile *originalIncident = &aTrack;
40 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
41 {
45 return &theParticleChange;
46 }
47
48 // create the target particle
49
50 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
51 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
52
53 if( verboseLevel > 1 )
54 {
55 const G4Material *targetMaterial = aTrack.GetMaterial();
56 G4cout << "G4RPGKPlusInelastic::ApplyYourself called" << G4endl;
57 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
58 G4cout << "target material = " << targetMaterial->GetName() << ", ";
59 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
60 << G4endl;
61 }
62 G4ReactionProduct currentParticle( const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition()));
63 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
64 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
65
66 // Fermi motion and evaporation
67 // As of Geant3, the Fermi energy calculation had not been Done
68
69 G4double ek = originalIncident->GetKineticEnergy();
70 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
71
72 G4double tkin = targetNucleus.Cinema( ek );
73 ek += tkin;
74 currentParticle.SetKineticEnergy( ek );
75 G4double et = ek + amas;
76 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
77 G4double pp = currentParticle.GetMomentum().mag();
78 if( pp > 0.0 )
79 {
80 G4ThreeVector momentum = currentParticle.GetMomentum();
81 currentParticle.SetMomentum( momentum * (p/pp) );
82 }
83
84 // calculate black track energies
85
86 tkin = targetNucleus.EvaporationEffects( ek );
87 ek -= tkin;
88 currentParticle.SetKineticEnergy( ek );
89 et = ek + amas;
90 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
91 pp = currentParticle.GetMomentum().mag();
92 if( pp > 0.0 )
93 {
94 G4ThreeVector momentum = currentParticle.GetMomentum();
95 currentParticle.SetMomentum( momentum * (p/pp) );
96 }
97
98 G4ReactionProduct modifiedOriginal = currentParticle;
99
100 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
101 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
102 G4bool incidentHasChanged = false;
103 G4bool targetHasChanged = false;
104 G4bool quasiElastic = false;
105 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
106 G4int vecLen = 0;
107 vec.Initialize( 0 );
108
109 const G4double cutOff = 0.1*MeV;
110 if( currentParticle.GetKineticEnergy() > cutOff )
111 Cascade( vec, vecLen,
112 originalIncident, currentParticle, targetParticle,
113 incidentHasChanged, targetHasChanged, quasiElastic );
114
115 CalculateMomenta( vec, vecLen,
116 originalIncident, originalTarget, modifiedOriginal,
117 targetNucleus, currentParticle, targetParticle,
118 incidentHasChanged, targetHasChanged, quasiElastic );
119
120 SetUpChange( vec, vecLen,
121 currentParticle, targetParticle,
122 incidentHasChanged );
123
124 delete originalTarget;
125
126 return &theParticleChange;
127}
128
129
130void G4RPGKPlusInelastic::Cascade(
132 G4int &vecLen,
133 const G4HadProjectile *originalIncident,
134 G4ReactionProduct &currentParticle,
135 G4ReactionProduct &targetParticle,
136 G4bool &incidentHasChanged,
137 G4bool &targetHasChanged,
138 G4bool &quasiElastic )
139{
140 // Derived from H. Fesefeldt's original FORTRAN code CASKP
141 //
142 // K+ undergoes interaction with nucleon within a nucleus. Check if it is
143 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
144 // occurs and input particle is degraded in energy. No other particles are produced.
145 // If reaction is possible, find the correct number of pions/protons/neutrons
146 // produced using an interpolation to multiplicity data. Replace some pions or
147 // protons/neutrons by kaons or strange baryons according to the average
148 // multiplicity per Inelastic reaction.
149 //
150 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
151 const G4double etOriginal = originalIncident->GetTotalEnergy();
152 const G4double targetMass = targetParticle.GetMass();
153 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
154 targetMass*targetMass +
155 2.0*targetMass*etOriginal );
156 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
157 if( availableEnergy < G4PionPlus::PionPlus()->GetPDGMass() )
158 {
159 quasiElastic = true;
160 return;
161 }
162 static G4bool first = true;
163 const G4int numMul = 1200;
164 const G4int numSec = 60;
165 static G4double protmul[numMul], protnorm[numSec]; // proton constants
166 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
167
168 // np = number of pi+, nneg = number of pi-, nz = number of pi0
169
170 G4int nt=0, np=0, nneg=0, nz=0;
171 const G4double c = 1.25;
172 const G4double b[] = { 0.70, 0.70 };
173 if( first ) // compute normalization constants, this will only be Done once
174 {
175 first = false;
176 G4int i;
177 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
178 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
179 G4int counter = -1;
180 for( np=0; np<(numSec/3); ++np )
181 {
182 for( nneg=std::max(0,np-2); nneg<=np; ++nneg )
183 {
184 for( nz=0; nz<numSec/3; ++nz )
185 {
186 if( ++counter < numMul )
187 {
188 nt = np+nneg+nz;
189 if( nt > 0 )
190 {
191 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
192 protnorm[nt-1] += protmul[counter];
193 }
194 }
195 }
196 }
197 }
198 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
199 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
200 counter = -1;
201 for( np=0; np<numSec/3; ++np )
202 {
203 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
204 {
205 for( nz=0; nz<numSec/3; ++nz )
206 {
207 if( ++counter < numMul )
208 {
209 nt = np+nneg+nz;
210 if( (nt>0) && (nt<=numSec) )
211 {
212 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
213 neutnorm[nt-1] += neutmul[counter];
214 }
215 }
216 }
217 }
218 }
219 for( i=0; i<numSec; ++i )
220 {
221 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
222 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
223 }
224 } // end of initialization
225
226 const G4double expxu = 82.; // upper bound for arg. of exp
227 const G4double expxl = -expxu; // lower bound for arg. of exp
232 G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
233 const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
234 G4double test, w0, wp, wt, wm;
235 if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
236 {
237 // suppress high multiplicity events at low momentum
238 // only one pion will be produced
239
240 nneg = np = nz = 0;
241 if( targetParticle.GetDefinition() == aProton )
242 {
243 test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[0])/(2.0*c*c) ) ) );
244 w0 = test;
245 wp = test*2.0;
246 if( G4UniformRand() < w0/(w0+wp) )
247 nz = 1;
248 else
249 np = 1;
250 }
251 else // target is a neutron
252 {
253 test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[1])/(2.0*c*c) ) ) );
254 w0 = test;
255 wp = test;
256 test = std::exp( std::min( expxu, std::max( expxl, -sqr(-1.0+b[1])/(2.0*c*c) ) ) );
257 wm = test;
258 wt = w0+wp+wm;
259 wp += w0;
260 G4double ran = G4UniformRand();
261 if( ran < w0/wt )
262 nz = 1;
263 else if( ran < wp/wt )
264 np = 1;
265 else
266 nneg = 1;
267 }
268 }
269 else
270 {
271 G4double n, anpn;
272 GetNormalizationConstant( availableEnergy, n, anpn );
273 G4double ran = G4UniformRand();
274 G4double dum, excs = 0.0;
275 if( targetParticle.GetDefinition() == aProton )
276 {
277 G4int counter = -1;
278 for( np=0; (np<numSec/3) && (ran>=excs); ++np )
279 {
280 for( nneg=std::max(0,np-2); (nneg<=np) && (ran>=excs); ++nneg )
281 {
282 for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
283 {
284 if( ++counter < numMul )
285 {
286 nt = np+nneg+nz;
287 if( nt > 0 )
288 {
289 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
290 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
291 if( std::fabs(dum) < 1.0 )
292 {
293 if( test >= 1.0e-10 )excs += dum*test;
294 }
295 else
296 excs += dum*test;
297 }
298 }
299 }
300 }
301 }
302 if( ran >= excs )return; // 3 previous loops continued to the end
303 np--; nneg--; nz--;
304 }
305 else // target must be a neutron
306 {
307 G4int counter = -1;
308 for( np=0; (np<numSec/3) && (ran>=excs); ++np )
309 {
310 for( nneg=std::max(0,np-1); (nneg<=(np+1)) && (ran>=excs); ++nneg )
311 {
312 for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
313 {
314 if( ++counter < numMul )
315 {
316 nt = np+nneg+nz;
317 if( (nt>=1) && (nt<=numSec) )
318 {
319 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
320 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
321 if( std::fabs(dum) < 1.0 )
322 {
323 if( test >= 1.0e-10 )excs += dum*test;
324 }
325 else
326 excs += dum*test;
327 }
328 }
329 }
330 }
331 }
332 if( ran >= excs )return; // 3 previous loops continued to the end
333 np--; nneg--; nz--;
334 }
335 }
336
337 if( targetParticle.GetDefinition() == aProton )
338 {
339 switch( np-nneg )
340 {
341 case 1:
342 if( G4UniformRand() < 0.5 )
343 {
344 if( G4UniformRand() < 0.5 )
345 currentParticle.SetDefinitionAndUpdateE( aKaonZS );
346 else
347 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
348 incidentHasChanged = true;
349 }
350 else
351 {
352 targetParticle.SetDefinitionAndUpdateE( aNeutron );
353 targetHasChanged = true;
354 }
355 break;
356 case 2:
357 if( G4UniformRand() < 0.5 )
358 currentParticle.SetDefinitionAndUpdateE( aKaonZS );
359 else
360 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
361 incidentHasChanged = true;
362 targetParticle.SetDefinitionAndUpdateE( aNeutron );
363 incidentHasChanged = true;
364 targetHasChanged = true;
365 break;
366 default:
367 break;
368 }
369 }
370 else // target is a neutron
371 {
372 switch( np-nneg )
373 {
374 case 0:
375 if( G4UniformRand() < 0.25 )
376 {
377 if( G4UniformRand() < 0.5 )
378 currentParticle.SetDefinitionAndUpdateE( aKaonZS );
379 else
380 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
381 targetParticle.SetDefinitionAndUpdateE( aProton );
382 incidentHasChanged = true;
383 targetHasChanged = true;
384 }
385 break;
386 case 1:
387 if( G4UniformRand() < 0.5 )
388 currentParticle.SetDefinitionAndUpdateE( aKaonZS );
389 else
390 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
391 incidentHasChanged = true;
392 break;
393 default: // assumes nneg = np+1 so charge is conserved
394 targetParticle.SetDefinitionAndUpdateE( aProton );
395 targetHasChanged = true;
396 break;
397 }
398 }
399
400 SetUpPions(np, nneg, nz, vec, vecLen);
401 return;
402}
403
404 /* end of file */
405
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
const G4double pi
T sqr(const T &x)
Definition: templates.hh:145