Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TripathiLightCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * *
21// * Parts of this code which have been developed by QinetiQ Ltd *
22// * under contract to the European Space Agency (ESA) are the *
23// * intellectual property of ESA. Rights to use, copy, modify and *
24// * redistribute this software for general public use are granted *
25// * in compliance with any licensing, distribution and development *
26// * policy adopted by the Geant4 Collaboration. This code has been *
27// * written by QinetiQ Ltd for the European Space Agency, under ESA *
28// * contract 17191/03/NL/LvH (Aurora Programme). *
29// * *
30// * By using, copying, modifying or distributing the software (or *
31// * any work based on the software) you agree to acknowledge its *
32// * use in resulting scientific publications, and indicate your *
33// * acceptance of all terms of the Geant4 Software license. *
34// ********************************************************************
35//
36// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37//
38// MODULE: G4TripathiLightCrossSection.cc
39//
40// Version: B.1
41// Date: 15/04/04
42// Author: P R Truscott
43// Organisation: QinetiQ Ltd, UK
44// Customer: ESA/ESTEC, NOORDWIJK
45// Contract: 17191/03/NL/LvH
46//
47// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48//
49// CHANGE HISTORY
50// --------------
51//
52// 6 October 2003, P R Truscott, QinetiQ Ltd, UK
53// Created.
54//
55// 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56// Beta release
57//
58// 24 November 2010 J. M. Quesada bug fixed in X_m
59// (according to eq. 14 in
60// R.K. Tripathi et al. Nucl. Instr. and Meth. in Phys. Res. B 155 (1999) 349-356)
61//
62// 19 Aug 2011 V.Ivanchenko move to new design and make x-section per element
63//
64// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65///////////////////////////////////////////////////////////////////////////////
66//
69#include "G4SystemOfUnits.hh"
70#include "G4DynamicParticle.hh"
71#include "G4WilsonRadius.hh"
72#include "G4NucleiProperties.hh"
73#include "G4HadTmpUtil.hh"
74#include "G4NistManager.hh"
75#include "G4Pow.hh"
76
78 : G4VCrossSectionDataSet("TripathiLightIons")
79{
80 // Constructor only needs to instantiate the object which provides functions
81 // to calculate the nuclear radius, and some other constants used to
82 // calculate cross-sections.
83
84 theWilsonRadius = new G4WilsonRadius();
85 r_0 = 1.1 * fermi;
86
87 // The following variable is set to true if
88 // G4TripathiLightCrossSection::GetCrossSection is going to be called from
89 // within G4TripathiLightCrossSection::GetCrossSection to check whether the
90 // cross-section is behaviing anomalously in the low-energy region.
91
92 lowEnergyCheck = false;
93}
94///////////////////////////////////////////////////////////////////////////////
95//
97{
98 //
99 // Destructor just needs to delete the pointer to the G4WilsonRadius object.
100 //
101 delete theWilsonRadius;
102}
103///////////////////////////////////////////////////////////////////////////////
104//
105G4bool
107 G4int ZT, const G4Material*)
108{
109 G4bool result = false;
110 G4int AT = G4lrint(G4NistManager::Instance()->GetAtomicMassAmu(ZT));
111 G4int ZP = G4lrint(theProjectile->GetDefinition()->GetPDGCharge()/eplus);
112 G4int AP = theProjectile->GetDefinition()->GetBaryonNumber();
113 if (theProjectile->GetKineticEnergy()/AP < 10.0*GeV &&
114 ((AT==1 && ZT==1) || (AP==1 && ZP==1) ||
115 (AT==1 && ZT==0) || (AP==1 && ZP==0) ||
116 (AT==2 && ZT==1) || (AP==2 && ZP==1) ||
117 (AT==3 && ZT==2) || (AP==3 && ZP==2) ||
118 (AT==4 && ZT==2) || (AP==4 && ZP==2))) { result = true; }
119 return result;
120}
121
122///////////////////////////////////////////////////////////////////////////////
123//
126 G4int ZT, const G4Material*)
127{
128 // Initialise the result.
129 G4double result = 0.0;
130
131 // Get details of the projectile and target (nucleon number, atomic number,
132 // kinetic enery and energy/nucleon.
133
135 G4int AT = G4lrint(xAT);
136 G4double EA = theProjectile->GetKineticEnergy()/MeV;
137 G4int AP = theProjectile->GetDefinition()->GetBaryonNumber();
138 G4double xAP= G4double(AP);
139 G4double ZP = G4lrint(theProjectile->GetDefinition()->GetPDGCharge()/eplus);
140 G4double E = EA / xAP;
141
142 G4Pow* g4pow = G4Pow::GetInstance();
143
144 G4double AT13 = g4pow->Z13(AT);
145 G4double AP13 = g4pow->Z13(AP);
146
147 // Determine target mass and energy within the centre-of-mass frame.
148
150 G4LorentzVector pT(0.0, 0.0, 0.0, mT);
151 G4LorentzVector pP(theProjectile->Get4Momentum());
152 pT += pP;
153 G4double E_cm = (pT.mag()-mT-pP.m())/MeV;
154
155 //G4cout << G4endl;
156 //G4cout << "### EA= " << EA << " ZT= " << ZT << " AT= " << AT
157 // << " ZP= " << ZP << " AP= " << AP << " E_cm= " << E_cm
158 // << " Elim= " << (0.8 + 0.04*ZT)*xAP << G4endl;
159
160 if (E_cm <= 0.0) { return 0.; }
161 if (E_cm <= (0.8 + 0.04*ZT)*xAP && !lowEnergyCheck) { return 0.; }
162
163 G4double E_cm13 = g4pow->A13(E_cm);
164
165 // Determine nuclear radii. Note that the r_p and r_T are defined differently
166 // from Wilson et al.
167
168 G4double r_rms_p = theWilsonRadius->GetWilsonRMSRadius(xAP);
169 G4double r_rms_t = theWilsonRadius->GetWilsonRMSRadius(xAT);
170
171 G4double r_p = 1.29*r_rms_p;
172 G4double r_t = 1.29*r_rms_t;
173
174 G4double Radius = (r_p + r_t)/fermi + 1.2*(AT13 + AP13)/E_cm13;
175
176 G4double B = 1.44 * ZP * ZT / Radius;
177
178 // Now determine other parameters associated with the parametric
179 // formula, depending upon the projectile and target.
180
181 G4double T1 = 0.0;
182 G4double D = 0.0;
183 G4double G = 0.0;
184
185 if ((AT==1 && ZT==1) || (AP==1 && ZP==1)) {
186 T1 = 23.0;
187 D = 1.85 + 0.16/(1+std::exp((500.0-E)/200.0));
188
189 } else if ((AT==1 && ZT==0) || (AP==1 && ZP==0)) {
190 T1 = 18.0;
191 D = 1.85 + 0.16/(1+std::exp((500.0-E)/200.0));
192
193 } else if ((AT==2 && ZT==1) || (AP==2 && ZP==1)) {
194 T1 = 23.0;
195 D = 1.65 + 0.1/(1+std::exp((500.0-E)/200.0));
196
197 } else if ((AT==3 && ZT==2) || (AP==3 && ZP==2)) {
198 T1 = 40.0;
199 D = 1.55;
200
201 } else if (AP==4 && ZP==2) {
202 if (AT==4 && ZT==2) {T1 = 40.0; G = 300.0;}
203 else if (ZT==4) {T1 = 25.0; G = 300.0;}
204 else if (ZT==7) {T1 = 40.0; G = 500.0;}
205 else if (ZT==13) {T1 = 25.0; G = 300.0;}
206 else if (ZT==26) {T1 = 40.0; G = 300.0;}
207 else {T1 = 40.0; G = 75.0;}
208 D = 2.77 - 8.0E-3*AT + 1.8E-5*AT*AT-0.8/(1.0+std::exp((250.0-E)/G));
209 }
210 else if (AT==4 && ZT==2) {
211 if (AP==4 && ZP==2) {T1 = 40.0; G = 300.0;}
212 else if (ZP==4) {T1 = 25.0; G = 300.0;}
213 else if (ZP==7) {T1 = 40.0; G = 500.0;}
214 else if (ZP==13) {T1 = 25.0; G = 300.0;}
215 else if (ZP==26) {T1 = 40.0; G = 300.0;}
216 else {T1 = 40.0; G = 75.0;}
217 D = 2.77 - 8.0E-3*AP + 1.8E-5*AP*AP-0.8/(1.0+std::exp((250.0-E)/G));
218 }
219
220 // C_E, S, deltaE, X1, S_L and X_m correspond directly with the original
221 // formulae of Tripathi et al in his report.
222 //G4cout << "E= " << E << " T1= " << T1 << " AP= " << AP << " ZP= " << ZP
223 // << " AT= " << AT << " ZT= " << ZT << G4endl;
224 G4double C_E = D*(1.0-std::exp(-E/T1)) -
225 0.292*std::exp(-E/792.0)*std::cos(0.229*std::pow(E,0.453));
226
227 G4double S = AP13*AT13/(AP13 + AT13);
228
229 G4double deltaE = 0.0;
230 G4double X1 = 0.0;
231 if (AT >= AP)
232 {
233 deltaE = 1.85*S + 0.16*S/E_cm13 - C_E + 0.91*(AT-2*ZT)*ZP/(xAT*xAP);
234 X1 = 2.83 - 3.1E-2*AT + 1.7E-4*AT*AT;
235 }
236 else
237 {
238 deltaE = 1.85*S + 0.16*S/E_cm13 - C_E + 0.91*(AP-2*ZP)*ZT/(xAT*xAP);
239 X1 = 2.83 - 3.1E-2*AP + 1.7E-4*AP*AP;
240 }
241 G4double S_L = 1.2 + 1.6*(1.0-std::exp(-E/15.0));
242 //JMQ 241110 bug fixed
243 G4double X_m = 1.0 - X1*std::exp(-E/(X1*S_L));
244
245 //G4cout << "deltaE= " << deltaE << " X1= " << X1 << " S_L= " << S_L << " X_m= " << X_m << G4endl;
246
247 // R_c is also highly dependent upon the A and Z of the projectile and
248 // target.
249
250 G4double R_c = 1.0;
251 if (AP==1 && ZP==1)
252 {
253 if (AT==2 && ZT==1) R_c = 13.5;
254 else if (AT==3 && ZT==2) R_c = 21.0;
255 else if (AT==4 && ZT==2) R_c = 27.0;
256 else if (ZT==3) R_c = 2.2;
257 }
258 else if (AT==1 && ZT==1)
259 {
260 if (AP==2 && ZP==1) R_c = 13.5;
261 else if (AP==3 && ZP==2) R_c = 21.0;
262 else if (AP==4 && ZP==2) R_c = 27.0;
263 else if (ZP==3) R_c = 2.2;
264 }
265 else if (AP==2 && ZP==1)
266 {
267 if (AT==2 && ZT==1) R_c = 13.5;
268 else if (AT==4 && ZT==2) R_c = 13.5;
269 else if (AT==12 && ZT==6) R_c = 6.0;
270 }
271 else if (AT==2 && ZT==1)
272 {
273 if (AP==2 && ZP==1) R_c = 13.5;
274 else if (AP==4 && ZP==2) R_c = 13.5;
275 else if (AP==12 && ZP==6) R_c = 6.0;
276 }
277 else if ((AP==4 && ZP==2 && (ZT==73 || ZT==79)) ||
278 (AT==4 && ZT==2 && (ZP==73 || ZP==79))) R_c = 0.6;
279
280 // Find the total cross-section. Check that it's value is positive, and if
281 // the energy is less that 10 MeV/nuc, find out if the cross-section is
282 // increasing with decreasing energy. If so this is a sign that the function
283 // is behaving badly at low energies, and the cross-section should be
284 // set to zero.
285
286 G4double xr = r_0*(AT13 + AP13 + deltaE);
287 result = pi * xr * xr * (1.0 - R_c*B/E_cm) * X_m;
288 //G4cout << " result= " << result << " E= " << E << " check= "<< lowEnergyCheck << G4endl;
289 if (result < 0.0) {
290 result = 0.0;
291
292 } else if (!lowEnergyCheck && E < 6.0) {
293 G4double f = 0.95;
294 G4DynamicParticle slowerProjectile = *theProjectile;
295 slowerProjectile.SetKineticEnergy(f * EA * MeV);
296
297 G4bool savelowenergy = lowEnergyCheck;
298 SetLowEnergyCheck(true);
299 G4double resultp = GetElementCrossSection(&slowerProjectile, ZT);
300 SetLowEnergyCheck(savelowenergy);
301 //G4cout << " newres= " << resultp << " f*EA= " << f*EA << G4endl;
302 if (resultp > result) { result = 0.0; }
303 }
304
305 return result;
306}
307
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void SetKineticEnergy(G4double aEnergy)
static G4NistManager * Instance()
G4double GetAtomicMassAmu(const G4String &symb) const
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double GetPDGCharge() const
Definition: G4Pow.hh:54
static G4Pow * GetInstance()
Definition: G4Pow.cc:50
G4double A13(G4double A)
Definition: G4Pow.hh:115
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
virtual G4bool IsElementApplicable(const G4DynamicParticle *theProjectile, G4int Z, const G4Material *)
virtual G4double GetElementCrossSection(const G4DynamicParticle *theProjectile, G4int Z, const G4Material *mat=0)
G4double GetWilsonRMSRadius(G4double A)
int G4lrint(double ad)
Definition: templates.hh:163