Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4EMDissociationCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * *
21// * Parts of this code which have been developed by QinetiQ Ltd *
22// * under contract to the European Space Agency (ESA) are the *
23// * intellectual property of ESA. Rights to use, copy, modify and *
24// * redistribute this software for general public use are granted *
25// * in compliance with any licensing, distribution and development *
26// * policy adopted by the Geant4 Collaboration. This code has been *
27// * written by QinetiQ Ltd for the European Space Agency, under ESA *
28// * contract 17191/03/NL/LvH (Aurora Programme). *
29// * *
30// * By using, copying, modifying or distributing the software (or *
31// * any work based on the software) you agree to acknowledge its *
32// * use in resulting scientific publications, and indicate your *
33// * acceptance of all terms of the Geant4 Software license. *
34// ********************************************************************
35//
36// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37//
38// MODULE: G4EMDissociationCrossSection.cc
39//
40// Version: B.1
41// Date: 15/04/04
42// Author: P R Truscott
43// Organisation: QinetiQ Ltd, UK
44// Customer: ESA/ESTEC, NOORDWIJK
45// Contract: 17191/03/NL/LvH
46//
47// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48//
49// CHANGE HISTORY
50// --------------
51//
52// 17 October 2003, P R Truscott, QinetiQ Ltd, UK
53// Created.
54//
55// 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56// Beta release
57//
58// 30 May 2005, J.P. Wellisch removed a compilation warning on gcc 3.4 for
59// geant4 7.1.
60// 09 November 2010, V.Ivanchenko make class applicable for Hydrogen but
61// set cross section for Hydrogen to zero
62//
63// 17 August 2011, V.Ivanchenko, provide migration to new design of cross
64// sections considering this cross section as element-wise
65//
66// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67//////////////////////////////////////////////////////////////////////////////
68//
71#include "G4SystemOfUnits.hh"
72#include "G4ParticleTable.hh"
73#include "G4IonTable.hh"
74#include "G4HadTmpUtil.hh"
75#include "globals.hh"
76#include "G4NistManager.hh"
77
78
80 : G4VCrossSectionDataSet("Electromagnetic dissociation")
81{
82 // This function makes use of the class which can sample the virtual photon
83 // spectrum, G4EMDissociationSpectrum.
84
85 thePhotonSpectrum = new G4EMDissociationSpectrum();
86
87 // Define other constants.
88
89 r0 = 1.18 * fermi;
90 J = 36.8 * MeV;
91 Qprime = 17.0 * MeV;
92 epsilon = 0.0768;
93 xd = 0.25;
94}
95
96//////////////////////////////////////////////////////////////////////////////
97
99{
100 delete thePhotonSpectrum;
101}
102/////////////////////////////////////////////////////////////////////////////
103//
104G4bool
106 G4int /*ZZ*/, const G4Material*)
107{
108//
109// The condition for the applicability of this class is that the projectile
110// must be an ion and the target must have more than one nucleon. In reality
111// the value of A for either the projectile or target could be much higher,
112// since for cases where both he projectile and target are medium to small
113// Z, the probability of the EMD process is, I think, VERY small.
114//
115 if (G4ParticleTable::GetParticleTable()->GetIonTable()->IsIon(part->GetDefinition())) {
116 return true;
117 } else {
118 return false;
119 }
120}
121
122//////////////////////////////////////////////////////////////////////////////
123//
125 (const G4DynamicParticle* theDynamicParticle, G4int Z,
126 const G4Material*)
127{
128 // VI protection for Hydrogen
129 if(1 >= Z) { return 0.0; }
130
131 //
132 // Get relevant information about the projectile and target (A, Z) and
133 // velocity of the projectile.
134 //
135 G4ParticleDefinition *definitionP = theDynamicParticle->GetDefinition();
136 G4double AP = definitionP->GetBaryonNumber();
137 G4double ZP = definitionP->GetPDGCharge();
138 G4double b = theDynamicParticle->Get4Momentum().beta();
139
141 G4double ZT = (G4double)Z;
142 G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b);
143 //
144 //
145 // Calculate the cross-section for the projectile and then the target. The
146 // information is returned in a G4PhysicsFreeVector, which separates out the
147 // cross-sections for the E1 and E2 moments of the virtual photon field, and
148 // the energies (GDR and GQR).
149 //
150 G4PhysicsFreeVector *theProjectileCrossSections =
151 GetCrossSectionForProjectile (AP, ZP, AT, ZT, b, bmin);
152 G4double crossSection =
153 (*theProjectileCrossSections)[0]+(*theProjectileCrossSections)[1];
154 delete theProjectileCrossSections;
155 G4PhysicsFreeVector *theTargetCrossSections =
156 GetCrossSectionForTarget (AP, ZP, AT, ZT, b, bmin);
157 crossSection +=
158 (*theTargetCrossSections)[0]+(*theTargetCrossSections)[1];
159 delete theTargetCrossSections;
160 return crossSection;
161}
162////////////////////////////////////////////////////////////////////////////////
163//
166 G4double ZP, G4double /* AT */, G4double ZT, G4double b, G4double bmin)
167{
168//
169//
170// Use Wilson et al's approach to calculate the cross-sections due to the E1
171// and E2 moments of the field at the giant dipole and quadrupole resonances
172// respectively, Note that the algorithm is traditionally applied to the
173// EMD break-up of the projectile in the field of the target, as is implemented
174// here.
175//
176// Initialise variables and calculate the energies for the GDR and GQR.
177//
178 G4double AProot3 = std::pow(AP,1.0/3.0);
179 G4double u = 3.0 * J / Qprime / AProot3;
180 G4double R0 = r0 * AProot3;
181 G4double E_GDR = hbarc / std::sqrt(0.7*amu_c2*R0*R0/8.0/J*
182 (1.0 + u - (1.0 + epsilon + 3.0*u)/(1.0 + epsilon + u)*epsilon));
183 G4double E_GQR = 63.0 * MeV / AProot3;
184//
185//
186// Determine the virtual photon spectra at these energies.
187//
188 G4double ZTsq = ZT * ZT;
189 G4double nE1 = ZTsq *
190 thePhotonSpectrum->GetGeneralE1Spectrum(E_GDR, b, bmin);
191 G4double nE2 = ZTsq *
192 thePhotonSpectrum->GetGeneralE2Spectrum(E_GQR, b, bmin);
193//
194//
195// Now calculate the cross-section of the projectile for interaction with the
196// E1 and E2 fields.
197//
198 G4double sE1 = 60.0 * millibarn * MeV * (AP-ZP)*ZP/AP;
199 G4double sE2 = 0.22 * microbarn / MeV * ZP * AProot3 * AProot3;
200 if (AP > 100.0) sE2 *= 0.9;
201 else if (AP > 40.0) sE2 *= 0.6;
202 else sE2 *= 0.3;
203//
204//
205// ... and multiply with the intensity of the virtual photon spectra to get
206// the probability of interaction.
207//
208 G4PhysicsFreeVector *theCrossSectionVector = new G4PhysicsFreeVector(2);
209 theCrossSectionVector->PutValue(0, E_GDR, sE1*nE1);
210 theCrossSectionVector->PutValue(1, E_GQR, sE2*nE2*E_GQR*E_GQR);
211
212 return theCrossSectionVector;
213}
214
215////////////////////////////////////////////////////////////////////////////////
216//
219 G4double ZP, G4double AT, G4double ZT, G4double b, G4double bmin)
220{
221//
222// This is a cheaky little member function to calculate the probability of
223// EMD for the target in the field of the projectile ... just by reversing the
224// A and Z's for the participants.
225//
226 return GetCrossSectionForProjectile (AT, ZT, AP, ZP, b, bmin);
227}
228
229////////////////////////////////////////////////////////////////////////////////
230//
233 G4double Z)
234{
235//
236// This is a simple algorithm to choose whether a proton or neutron is ejected
237// from the nucleus in the EMD interaction.
238//
239 G4double p = 0.0;
240 if (Z < 6.0)
241 p = 0.5;
242 else if (Z < 8.0)
243 p = 0.6;
244 else if (Z < 14.0)
245 p = 0.7;
246 else
247 {
248 G4double p1 = (G4double) Z / (G4double) A;
249 G4double p2 = 1.95*std::exp(-0.075*Z);
250 if (p1 < p2) p = p1;
251 else p = p2;
252 }
253
254 return p;
255}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4PhysicsFreeVector * GetCrossSectionForProjectile(G4double, G4double, G4double, G4double, G4double, G4double)
virtual G4bool IsElementApplicable(const G4DynamicParticle *, G4int Z, const G4Material *)
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *)
G4double GetWilsonProbabilityForProtonDissociation(G4double, G4double)
G4PhysicsFreeVector * GetCrossSectionForTarget(G4double, G4double, G4double, G4double, G4double, G4double)
G4double GetGeneralE1Spectrum(G4double, G4double, G4double)
G4double GetClosestApproach(const G4double, const G4double, G4double, G4double, G4double)
G4double GetGeneralE2Spectrum(G4double, G4double, G4double)
static G4NistManager * Instance()
G4double GetAtomicMassAmu(const G4String &symb) const
G4double GetPDGCharge() const
static G4ParticleTable * GetParticleTable()
void PutValue(size_t binNumber, G4double binValue, G4double dataValue)