Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NystromRK4.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// History:
30// - Created: I.Gavrilenko 15.05.2009 (as G4AtlasRK4)
31// - Adaptations: J. Apostolakis May-Nov 2009
32// -------------------------------------------------------------------
33
34#include "G4NystromRK4.hh"
35#include <iostream>
36
37//////////////////////////////////////////////////////////////////
38// Constructor - with optional distance ( has default value)
39//////////////////////////////////////////////////////////////////
40
41G4NystromRK4::G4NystromRK4(G4Mag_EqRhs* magEqRhs, G4double distanceConstField)
42 : G4MagIntegratorStepper(magEqRhs, 6), // number of variables
43 m_fEq( magEqRhs ),
44 m_magdistance( distanceConstField ),
45 m_cof( 0.0 ),
46 m_mom( 0.0 ),
47 m_imom( 0.0 ),
48 m_cachedMom( false )
49{
50 m_fldPosition[0] = m_iPoint[0] = m_fPoint[0] = m_mPoint[0] = 9.9999999e+99 ;
51 m_fldPosition[1] = m_iPoint[1] = m_fPoint[1] = m_mPoint[1] = 9.9999999e+99 ;
52 m_fldPosition[2] = m_iPoint[2] = m_fPoint[2] = m_mPoint[2] = 9.9999999e+99 ;
53 m_fldPosition[3] = -9.9999999e+99;
54 m_lastField[0] = m_lastField[1] = m_lastField[2] = 0.0;
55
56 m_magdistance2 = distanceConstField*distanceConstField;
57}
58
59////////////////////////////////////////////////////////////////
60// Destructor
61////////////////////////////////////////////////////////////////
62
64{
65}
66
67/////////////////////////////////////////////////////////////////////////////////
68// Integration in one step
69/////////////////////////////////////////////////////////////////////////////////
70
71void
73(const G4double P[],const G4double dPdS[],G4double Step,G4double Po[],G4double Err[])
74{
75 G4double R[3] = { P[0], P[1] , P[2]};
76 G4double A[3] = {dPdS[0], dPdS[1], dPdS[2]};
77
78 m_iPoint[0]=R[0]; m_iPoint[1]=R[1]; m_iPoint[2]=R[2];
79
80 const G4double one_sixth= 1./6.;
81 G4double S = Step ;
82 G4double S5 = .5*Step ;
83 G4double S4 = .25*Step ;
84 G4double S6 = Step * one_sixth; // Step / 6.;
85
86
87 // John A added, in order to emulate effect of call to changed/derived RHS
88 // m_mom = sqrt(P[3]*P[3]+P[4]*P[4]+P[5]*P[5]);
89 // m_imom = 1./m_mom;
90 // m_cof = m_fEq->FCof()*m_imom;
91
92 // Point 1
93 //
94 G4double K1[3] = { m_imom*dPdS[3], m_imom*dPdS[4], m_imom*dPdS[5] };
95
96 // Point2
97 //
98 G4double p[4] = {R[0]+S5*(A[0]+S4*K1[0]),
99 R[1]+S5*(A[1]+S4*K1[1]),
100 R[2]+S5*(A[2]+S4*K1[2]),
101 P[7] };
102 getField(p);
103
104 G4double A2[3] = {A[0]+S5*K1[0],A[1]+S5*K1[1],A[2]+S5*K1[2]};
105 G4double K2[3] = {(A2[1]*m_lastField[2]-A2[2]*m_lastField[1])*m_cof,
106 (A2[2]*m_lastField[0]-A2[0]*m_lastField[2])*m_cof,
107 (A2[0]*m_lastField[1]-A2[1]*m_lastField[0])*m_cof};
108
109 m_mPoint[0]=p[0]; m_mPoint[1]=p[1]; m_mPoint[2]=p[2];
110
111 // Point 3 with the same magnetic field
112 //
113 G4double A3[3] = {A[0]+S5*K2[0],A[1]+S5*K2[1],A[2]+S5*K2[2]};
114 G4double K3[3] = {(A3[1]*m_lastField[2]-A3[2]*m_lastField[1])*m_cof,
115 (A3[2]*m_lastField[0]-A3[0]*m_lastField[2])*m_cof,
116 (A3[0]*m_lastField[1]-A3[1]*m_lastField[0])*m_cof};
117
118 // Point 4
119 //
120 p[0] = R[0]+S*(A[0]+S5*K3[0]);
121 p[1] = R[1]+S*(A[1]+S5*K3[1]);
122 p[2] = R[2]+S*(A[2]+S5*K3[2]);
123
124 getField(p);
125
126 G4double A4[3] = {A[0]+S*K3[0],A[1]+S*K3[1],A[2]+S*K3[2]};
127 G4double K4[3] = {(A4[1]*m_lastField[2]-A4[2]*m_lastField[1])*m_cof,
128 (A4[2]*m_lastField[0]-A4[0]*m_lastField[2])*m_cof,
129 (A4[0]*m_lastField[1]-A4[1]*m_lastField[0])*m_cof};
130
131 // New position
132 //
133 Po[0] = P[0]+S*(A[0]+S6*(K1[0]+K2[0]+K3[0]));
134 Po[1] = P[1]+S*(A[1]+S6*(K1[1]+K2[1]+K3[1]));
135 Po[2] = P[2]+S*(A[2]+S6*(K1[2]+K2[2]+K3[2]));
136
137 m_fPoint[0]=Po[0]; m_fPoint[1]=Po[1]; m_fPoint[2]=Po[2];
138
139 // New direction
140 //
141 Po[3] = A[0]+S6*(K1[0]+K4[0]+2.*(K2[0]+K3[0]));
142 Po[4] = A[1]+S6*(K1[1]+K4[1]+2.*(K2[1]+K3[1]));
143 Po[5] = A[2]+S6*(K1[2]+K4[2]+2.*(K2[2]+K3[2]));
144
145 // Errors
146 //
147 Err[3] = S*std::fabs(K1[0]-K2[0]-K3[0]+K4[0]);
148 Err[4] = S*std::fabs(K1[1]-K2[1]-K3[1]+K4[1]);
149 Err[5] = S*std::fabs(K1[2]-K2[2]-K3[2]+K4[2]);
150 Err[0] = S*Err[3] ;
151 Err[1] = S*Err[4] ;
152 Err[2] = S*Err[5] ;
153 Err[3]*= m_mom ;
154 Err[4]*= m_mom ;
155 Err[5]*= m_mom ;
156
157 // Normalize momentum
158 //
159 G4double normF = m_mom/std::sqrt(Po[3]*Po[3]+Po[4]*Po[4]+Po[5]*Po[5]);
160 Po [3]*=normF; Po[4]*=normF; Po[5]*=normF;
161
162 // Pass Energy, time unchanged -- time is not integrated !!
163 Po[6]=P[6]; Po[7]=P[7];
164}
165
166
167/////////////////////////////////////////////////////////////////////////////////
168// Estimate the maximum distance from the curve to the chord
169/////////////////////////////////////////////////////////////////////////////////
170
173{
174 G4double ax = m_fPoint[0]-m_iPoint[0];
175 G4double ay = m_fPoint[1]-m_iPoint[1];
176 G4double az = m_fPoint[2]-m_iPoint[2];
177 G4double dx = m_mPoint[0]-m_iPoint[0];
178 G4double dy = m_mPoint[1]-m_iPoint[1];
179 G4double dz = m_mPoint[2]-m_iPoint[2];
180 G4double d2 = (ax*ax+ay*ay+az*az) ;
181
182 if(d2!=0.) {
183 G4double ds = (ax*dx+ay*dy+az*dz)/d2;
184 dx -= (ds*ax) ;
185 dy -= (ds*ay) ;
186 dz -= (ds*az) ;
187 }
188 return std::sqrt(dx*dx+dy*dy+dz*dz);
189}
190
191/////////////////////////////////////////////////////////////////////////////////
192// Derivatives calculation - caching the momentum value
193/////////////////////////////////////////////////////////////////////////////////
194
195void
197{
198 G4double P4vec[4]= { P[0], P[1], P[2], P[7] }; // Time is P[7]
199 getField(P4vec);
200 m_mom = std::sqrt(P[3]*P[3]+P[4]*P[4]+P[5]*P[5]) ;
201 m_imom = 1./m_mom ;
202 m_cof = m_fEq->FCof()*m_imom ;
203 m_cachedMom = true ; // Caching the value
204 dPdS[0] = P[3]*m_imom ; // dx /ds
205 dPdS[1] = P[4]*m_imom ; // dy /ds
206 dPdS[2] = P[5]*m_imom ; // dz /ds
207 dPdS[3] = m_cof*(P[4]*m_lastField[2]-P[5]*m_lastField[1]) ; // dPx/ds
208 dPdS[4] = m_cof*(P[5]*m_lastField[0]-P[3]*m_lastField[2]) ; // dPy/ds
209 dPdS[5] = m_cof*(P[3]*m_lastField[1]-P[4]*m_lastField[0]) ; // dPz/ds
210}
double G4double
Definition: G4Types.hh:64
G4double FCof() const
Definition: G4Mag_EqRhs.hh:83
G4double DistChord() const
void Stepper(const G4double P[], const G4double dPdS[], G4double step, G4double Po[], G4double Err[])
Definition: G4NystromRK4.cc:73
virtual void ComputeRightHandSide(const double P[], double dPdS[])
G4NystromRK4(G4Mag_EqRhs *EquationMotion, G4double distanceConstField=0.0)
Definition: G4NystromRK4.cc:41